1D convolutional neural network-based adaptive algorithm structure with system fault diagnosis and signal feature extraction for noise and vibration enhancement in mechanical systems

计算机科学 稳健性(进化) 特征提取 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 噪音(视频) 信号(编程语言) 算法 程序设计语言 化学 哲学 图像(数学) 基因 生物化学 语言学
作者
Dongwoo Hong,Byeongil Kim
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110395-110395 被引量:15
标识
DOI:10.1016/j.ymssp.2023.110395
摘要

A variety of adaptive algorithms are utilized to control the vibration and noise for mechanical systems in the industrial field, since their characteristics usually changes due to unwanted disturbance and malfunctioning. A reference signal plays an important role in signal tracking through adaptive algorithms, and well-characterized information about the tracked signal should be employed. However, it is typically difficult to determine the signal feature because operating systems generate complex signals. Moreover, when the system state changes due to malfunctions or disturbances, signal feature can also be changed, affecting the performance of adaptive algorithms. This study proposes a novel strategy based on a 1D convolutional neural network (1D CNN) for improving the signal tracking performance. 1D CNN has the ability to deal with consecutive data that is directly measured by an accelerometer attached to mechanical systems, as well as to extract the signal feature through convolutional layers. The development of proposed algorithm can be explained with following three parts: 1) Data measurement opportunities are limited, particularly because fault data is more difficult to measure than normal state data. Therefore, when performing learning, there is a problem of a lack of training data. Thus, a data generator is proposed that is based on a generative adversarial network (GAN) and a variational auto encoder (VAE). 2) In order to extract the frequency and phase and consider the system state to automatically define the reference signal and increase tracking robustness, the methodology of signal feature extraction and diagnosis is proposed based on a 1D CNN. In order to validate the tracking performance, a neural network-based signal tracking algorithm is applied to the developed structure. Furthermore, bearing and linear motion (LM) guide data from experiments is employed to confirm the versatility of the developed algorithm. Through above process, it is demonstrated that based on defined reference signal through the extracted feature, the signal tracking performance can be enhanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达幼珊完成签到,获得积分10
2秒前
2秒前
内向绿竹应助落寞的妖妖采纳,获得10
2秒前
李一诺完成签到 ,获得积分10
3秒前
4秒前
小李完成签到,获得积分20
5秒前
manan发布了新的文献求助10
5秒前
天天快乐应助wang5945采纳,获得10
6秒前
tamo发布了新的文献求助10
7秒前
科目三应助ZZZZZ采纳,获得10
8秒前
科研通AI5应助小旺仔采纳,获得10
8秒前
wwss发布了新的文献求助10
9秒前
路上的小黄花完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
南橘完成签到 ,获得积分10
12秒前
wwss完成签到,获得积分10
13秒前
沉静的元容完成签到,获得积分10
13秒前
zz完成签到,获得积分20
15秒前
11111发布了新的文献求助30
15秒前
彭于晏完成签到,获得积分0
15秒前
小薇丸子发布了新的文献求助10
15秒前
爱吃蔬菜完成签到,获得积分10
16秒前
ding应助kk采纳,获得10
17秒前
tamo完成签到,获得积分10
18秒前
zcx1995完成签到,获得积分10
20秒前
jayliu完成签到,获得积分10
20秒前
20秒前
Ink完成签到,获得积分20
25秒前
广州东站发布了新的文献求助10
26秒前
小薇丸子完成签到,获得积分10
27秒前
搞搞科研发布了新的文献求助10
28秒前
D33sama完成签到,获得积分10
29秒前
明亮晓旋发布了新的文献求助30
31秒前
31秒前
32秒前
研友_LN25rL完成签到,获得积分10
33秒前
坚若磐石完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742