Post‐earthquake damage recognition and condition assessment of bridges using UAV integrated with deep learning approach

桥(图论) 计算机科学 加权 任务(项目管理) 深度学习 人工智能 结构工程 工程类 医学 内科学 放射科 系统工程
作者
Xiao‐Wei Ye,Siyuan Ma,Zhi‐Xiong Liu,Yang Ding,Zhe‐Xun Li,Tao Jin
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:25
标识
DOI:10.1002/stc.3128
摘要

Rapid and accurate assessment of the damage to bridge structures after an earthquake can provide a basis for decision-making regarding post-earthquake emergency work. However, the traditional structural damage inspection techniques are subjective, time-consuming, and inefficient. This paper proposed a framework for rapid post-earthquake structural damage inspection and condition assessment by integrating the technologies of satellite, unmanned aerial vehicle (UAV), and smartphone with the deep learning approach. The images of structural components of post-earthquake bridges can be obtained by UAVs and smartphones. Furthermore, the multi-task high-resolution net (MT-HRNet) model was adopted to recognize the structural components and damage conditions by weighting and combining the loss functions of a single-task HRNet model. The performance of the proposed MT-HRNet model and the single-task HRNet model was verified based on the Tokaido dataset, which includes 2000 images of post-earthquake bridges. The results showed that the MT-HRNet model and the HRNet model exhibited equivalent recognition accuracy, while the number of floating-point-operations (FLOPs) and the parameters of the MT-HRNet model were reduced by 46.48% and 49.58% compared with the HRNet model. In addition, a method for the determination of the safety risk level of the post-earthquake bridge structures was developed, and the evaluation indices were established by considering the damage type, the spalling area, and the width of cracks as well as the recognition statistics of all images in Tokaido dataset. This study will provide a valuable reference for the rapid determination of structural safety level and the corresponding treatment measures of post-earthquake bridges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助30
刚刚
田様应助taotao采纳,获得10
1秒前
2秒前
去hhh发布了新的文献求助10
2秒前
2秒前
Yi发布了新的文献求助10
3秒前
3秒前
Rita应助高高的故事采纳,获得10
3秒前
无聊的夜山完成签到,获得积分10
3秒前
make发布了新的文献求助10
4秒前
Hale完成签到,获得积分0
4秒前
4秒前
健忘溪流完成签到 ,获得积分10
4秒前
科研通AI6应助简单的笑容采纳,获得10
6秒前
Linyi发布了新的文献求助10
6秒前
浮游应助普外科老白采纳,获得10
7秒前
7秒前
8秒前
南浔发布了新的文献求助10
8秒前
YSS完成签到,获得积分10
9秒前
aha发布了新的文献求助10
9秒前
10秒前
zhinian完成签到 ,获得积分10
10秒前
典雅白柏完成签到,获得积分20
10秒前
12秒前
taotao发布了新的文献求助10
13秒前
14秒前
仔仔姨发布了新的文献求助10
14秒前
谷谷发布了新的文献求助10
15秒前
1111发布了新的文献求助10
15秒前
火星上的鸵鸟完成签到 ,获得积分10
16秒前
abc完成签到 ,获得积分10
17秒前
小章鱼发布了新的文献求助10
17秒前
科研通AI2S应助coffeecoffee采纳,获得10
17秒前
你找谁哇发布了新的文献求助10
17秒前
上官若男应助科研渣渣采纳,获得10
17秒前
18秒前
柔弱夜梦完成签到 ,获得积分10
18秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242511
求助须知:如何正确求助?哪些是违规求助? 4409060
关于积分的说明 13723997
捐赠科研通 4278352
什么是DOI,文献DOI怎么找? 2347612
邀请新用户注册赠送积分活动 1344773
关于科研通互助平台的介绍 1302862