亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application Value of the Automated Machine Learning Model Based on Modified Computed Tomography Severity Index Combined With Serological Indicators in the Early Prediction of Severe Acute Pancreatitis

接收机工作特性 医学 急性胰腺炎 逻辑回归 人工智能 机器学习 数据集 计算机断层摄影术 曲线下面积 预测建模 绘图(图形) 统计 放射科 计算机科学 内科学 数学
作者
Rufa Zhang,Minyue Yin,Anqi Jiang,Shihou Zhang,Luojie Liu,Xiaodan Xu
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (7): 692-701 被引量:9
标识
DOI:10.1097/mcg.0000000000001909
摘要

Background and Aims: Machine learning (ML) algorithms are widely applied in building models of medicine due to their powerful studying and generalizing ability. To assess the value of the Modified Computed Tomography Severity Index (MCTSI) combined with serological indicators for early prediction of severe acute pancreatitis (SAP) by automated ML (AutoML). Patients and Methods: The clinical data, of the patients with acute pancreatitis (AP) hospitalized in Hospital 1 and hospital 2 from January 2017 to December 2021, were retrospectively analyzed. Serological indicators within 24 hours of admission were collected. MCTSI score was completed by noncontrast computed tomography within 24 hours of admission. Data from the hospital 1 were adopted for training, and data from the hospital 2 were adopted for external validation. The diagnosis of AP and SAP was based on the 2012 revised Atlanta classification of AP. Models were built using traditional logistic regression and AutoML analysis with 4 types of algorithms. The performance of models was evaluated by the receiver operating characteristic curve, the calibration curve, and the decision curve analysis based on logistic regression and decision curve analysis, feature importance, SHapley Additive exPlanation Plot, and Local Interpretable Model Agnostic Explanation based on AutoML. Results: A total of 499 patients were used to develop the models in the training data set. An independent data set of 201 patients was used to test the models. The model developed by the Deep Neural Net (DL) outperformed other models with an area under the receiver operating characteristic curve (areas under the curve) of 0.907 in the test set. Furthermore, among these AutoML models, the DL and gradient boosting machine models achieved the highest sensitivity values, both exceeding 0.800. Conclusion: The AutoML model based on the MCTSI score combined with serological indicators has good predictive value for SAP in the early stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
30秒前
过氧化氢给过氧化氢的求助进行了留言
1分钟前
ovo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
1分钟前
Shawn_54发布了新的文献求助10
2分钟前
stephanie_han完成签到,获得积分10
2分钟前
Shawn_54完成签到,获得积分10
2分钟前
浮游应助3sigma采纳,获得10
2分钟前
2分钟前
2分钟前
爱科研的小凡完成签到,获得积分10
2分钟前
2分钟前
yo发布了新的文献求助10
2分钟前
胖小羊完成签到 ,获得积分10
2分钟前
oleskarabach发布了新的文献求助30
3分钟前
3分钟前
3分钟前
yo完成签到,获得积分20
3分钟前
oleskarabach完成签到,获得积分20
3分钟前
脑洞疼应助xun采纳,获得10
3分钟前
3分钟前
3分钟前
玛琳卡迪马完成签到,获得积分10
3分钟前
Kamalika完成签到,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
3分钟前
CodeCraft应助xun采纳,获得10
4分钟前
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088