Control of soft robots with inertial dynamics

机器人 非线性系统 惯性参考系 计算机科学 控制理论(社会学) 曲率 软机器人 控制工程 系统动力学 人工智能 模拟 工程类 控制(管理) 物理 经典力学 数学 几何学 量子力学
作者
David A. Haggerty,Michael J. Banks,Ervin Kamenar,Alan B. Cao,Patrick C. Curtis,Igor Mezić,Elliot W. Hawkes
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:8 (81) 被引量:31
标识
DOI:10.1126/scirobotics.add6864
摘要

Soft robots promise improved safety and capability over rigid robots when deployed near humans or in complex, delicate, and dynamic environments. However, infinite degrees of freedom and the potential for highly nonlinear dynamics severely complicate their modeling and control. Analytical and machine learning methodologies have been applied to model soft robots but with constraints: quasi-static motions, quasi-linear deflections, or both. Here, we advance the modeling and control of soft robots into the inertial, nonlinear regime. We controlled motions of a soft, continuum arm with velocities 10 times larger and accelerations 40 times larger than those of previous work and did so for high-deflection shapes with more than 110° of curvature. We leveraged a data-driven learning approach for modeling, based on Koopman operator theory, and we introduce the concept of the static Koopman operator as a pregain term in optimal control. Our approach is rapid, requiring less than 5 min of training; is computationally low cost, requiring as little as 0.5 s to build the model; and is design agnostic, learning and accurately controlling two morphologically different soft robots. This work advances rapid modeling and control for soft robots from the realm of quasi-static to inertial, laying the groundwork for the next generation of compliant and highly dynamic robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助wcy采纳,获得10
刚刚
共享精神应助123采纳,获得10
刚刚
野性的十三完成签到,获得积分10
刚刚
fanjinzhu完成签到,获得积分10
1秒前
chonger完成签到,获得积分10
1秒前
2秒前
云尘忆梦发布了新的文献求助10
2秒前
MZT发布了新的文献求助10
3秒前
3秒前
小贝完成签到,获得积分20
3秒前
kexing完成签到,获得积分10
3秒前
酷波er应助LiusuWang采纳,获得10
3秒前
活力立诚完成签到,获得积分10
4秒前
4秒前
4秒前
平常无颜发布了新的文献求助10
5秒前
cola完成签到,获得积分10
6秒前
Steven发布了新的文献求助10
6秒前
菠萝炒饭发布了新的文献求助50
6秒前
周小鱼发布了新的文献求助20
6秒前
7秒前
7秒前
JIyong完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
何1发布了新的文献求助10
7秒前
8秒前
36038138完成签到 ,获得积分10
8秒前
111完成签到,获得积分20
8秒前
8秒前
9秒前
李健应助前行者采纳,获得30
9秒前
rrrrrrry发布了新的文献求助10
9秒前
柚子发布了新的文献求助10
10秒前
10秒前
10秒前
小二郎应助年轻尔丝采纳,获得10
10秒前
冷静书白发布了新的文献求助20
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846