亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Random Forest Regression in Maize Yield Prediction

过度拟合 随机森林 机器学习 决策树 农业 人工智能 计算机科学 分层抽样 农业工程 统计 数学 人工神经网络 地理 工程类 考古
作者
Miriam Sitienei,Ayubu Anapapa,Argwings Otieno
出处
期刊:Asian Journal of Probability and Statistics [Sciencedomain International]
卷期号:23 (4): 43-52
标识
DOI:10.9734/ajpas/2023/v23i4511
摘要

Artificial Intelligence is the discipline of making computers behave without explicit programming. Machine learning is a subset of artificial Intelligence that enables machines to learn autonomously from previous data without explicit programming. The purpose of machine learning in agriculture is to increase crop yield and quality in the agricultural sector. It is driven by the emergence of big data technologies and high-performance computation, which provide new opportunities to unravel, quantify, and comprehend data-intensive agricultural operational processes. Random Forest is an ensemble technique that reduces the result's overfitting. This algorithm is primarily utilized for forecasting. It generates a forest with numerous trees. The random forest classifier predicts that the model's accuracy will increase as the number of trees in the forest increases. All through the training phase, multiple decision trees are constructed. It generates subsets of data from randomly selected training samples with replacement. Each data subset is employed to train decision trees. It utilizes multiple trees to reduce the possibility of overfitting. Maize is a staple food in Kenya and having it in sufficient amounts in the country assures the farmers' food security and economic stability. This study predicted maize yield in the Kenyan county of Uasin Gishu using the machine learning algorithm Random Forest regression. The regression model employed a mixed-methods research design, and the survey employed well-structured questionnaires containing quantitative and qualitative variables, which were directly administered to 30 clustered wards' representative farmers. The questionnaire encompassed 30 maize production-related variables from 900 randomly selected maize producers in 30 wards. The model was able to identify important variables from the dataset and predicted maize yield. The prediction evaluation used machine learning regression metrics, Root Mean Squared error-RMSE=0.52199, Mean Squared Error-MSE =0.27248, and Mean Absolute Error-MAE = 0.471722. The model predicted maize yield and indicated the contribution of each variable to the overall prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Lee采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
赘婿应助柔弱平蝶采纳,获得10
30秒前
阔达静曼完成签到 ,获得积分10
38秒前
谦让蘑菇完成签到 ,获得积分10
41秒前
43秒前
柔弱平蝶发布了新的文献求助10
46秒前
Estelle发布了新的文献求助30
49秒前
搜集达人应助Rolo采纳,获得10
54秒前
深情安青应助柔弱平蝶采纳,获得10
57秒前
1分钟前
香蕉觅云应助重要纸飞机采纳,获得30
1分钟前
1分钟前
Rolo发布了新的文献求助10
1分钟前
Rolo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
柔弱平蝶发布了新的文献求助10
1分钟前
orixero应助科研通管家采纳,获得10
2分钟前
cacaldon发布了新的文献求助10
2分钟前
2分钟前
cacaldon完成签到,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
3分钟前
3分钟前
67完成签到 ,获得积分10
3分钟前
F7erxl完成签到,获得积分10
3分钟前
SYLH应助Lei-sir采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
冉亦完成签到,获得积分10
4分钟前
caca完成签到,获得积分0
4分钟前
小芭乐完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
Yan发布了新的文献求助10
5分钟前
5分钟前
turbohuan发布了新的文献求助10
5分钟前
精明的橘子完成签到,获得积分10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845519
求助须知:如何正确求助?哪些是违规求助? 3387795
关于积分的说明 10550589
捐赠科研通 3108429
什么是DOI,文献DOI怎么找? 1712776
邀请新用户注册赠送积分活动 824501
科研通“疑难数据库(出版商)”最低求助积分说明 774877