Self-Supervised Adversarial Learning for Domain Adaptation of Pavement Distress Classification

对抗制 域适应 人工智能 计算机科学 机器学习 苦恼 领域(数学分析) 适应(眼睛) 监督学习 人工神经网络 数学 心理学 分类器(UML) 心理治疗师 神经科学 数学分析
作者
Yanwen Wu,Mingjian Hong,Ao Li,Sheng Huang,Huijun Liu,Yongxin Ge
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 1966-1977 被引量:6
标识
DOI:10.1109/tits.2023.3314680
摘要

Pavement distress classification is crucial for the maintenance of highways. Although many methods for classifying pavement distress are available, they all assume that training and testing datasets are drawn from the same distribution. When we introduce a new unlabeled dataset with a different distribution, the performance of existing methods decreases considerably due to domain shift, motivating us to look beyond the supervised setting to utilize unlabeled datasets directly in training a model. Therefore, we develop a novel unsupervised domain adaptation (UDA) framework, namely, the Self-supervised Adversarial Network (SSAN) for the first time in this study to conduct multi-category pavement distress classification on an unlabeled target domain. In particular, SSAN leverages adversarial domain adaptation (ADA) thoughts to align the features of different domains. However, distress typically occupies a small Section of high-resolution pavement images. Consequently, aligning features directly is unreasonable because the aligning procedure is still dominated by background features instead of foreground features, which are the most useful information for classification. Therefore, we design a pretext module, called Self-supervised Learning for the Target domain (SLT), to mine foreground information. To validate our method, we use two challenging pavement crack datasets, namely, the Chonqing University Bituminous Pavement Disease Detection (CQU-BPDD) and the Chongqing University Bituminous Pavement Multi-label Disease Detection (CQU-BPMDD) datasets. Moreover, extensive experiments demonstrate that SSAN outperforms state-of-the-art UDA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助云端步伐采纳,获得10
1秒前
wen完成签到,获得积分10
1秒前
稳重凤凰完成签到 ,获得积分10
1秒前
多金发布了新的文献求助10
2秒前
sunhealth完成签到,获得积分10
3秒前
科研通AI5应助星宫金魁采纳,获得30
3秒前
张孟翰发布了新的文献求助10
4秒前
皮二牛牛完成签到,获得积分10
4秒前
5秒前
6秒前
kingwill举报isvv求助涉嫌违规
7秒前
8秒前
8秒前
8秒前
8秒前
贪玩的访风完成签到 ,获得积分10
8秒前
9秒前
咕咕完成签到,获得积分10
9秒前
10秒前
走着走着就散了完成签到,获得积分10
10秒前
祁乾完成签到 ,获得积分10
11秒前
多金完成签到,获得积分10
11秒前
桐桐应助12214采纳,获得10
11秒前
dslnfakjnij发布了新的文献求助10
12秒前
心静如水发布了新的文献求助20
13秒前
13秒前
黑米粥发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
小鲤鱼在睡觉完成签到,获得积分20
16秒前
阳光的静白完成签到,获得积分10
16秒前
dslnfakjnij完成签到,获得积分10
17秒前
17秒前
OneHundred完成签到,获得积分20
17秒前
顺心牛排完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
爱静静应助XiaohuLee采纳,获得10
21秒前
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867346
求助须知:如何正确求助?哪些是违规求助? 3409665
关于积分的说明 10664562
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728652
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780536