Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction

可解释性 黑匣子 燃料效率 特征(语言学) 灵活性(工程) 计算机科学 变量(数学) 白盒子 消费(社会学) 广义加性模型 预测建模 人工智能 机器学习 数学优化 工程类 数学 汽车工程 统计 社会学 哲学 数学分析 语言学 社会科学
作者
Haoqing Wang,Ran Yan,Shuaian Wang,Lu Zhen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:157: 104361-104361 被引量:41
标识
DOI:10.1016/j.trc.2023.104361
摘要

Ship fuel consumption is a major component of maritime transport costs and most of its emissions are harmful to the environment. Hence, it is essential to build an accurate ship fuel consumption prediction model, thereby providing reference to the navigation operations. However, maritime industry experts are wary of advanced black-box models since they cannot interpret the outcomes of these models. The application of advanced black-box models in the shipping industry remains limited and it is necessary to develop both accurate and interpretable ship fuel consumption prediction models. This study uses domain knowledge to develop two innovative methods for predicting ship fuel consumption—the first is a physics-informed neural network (PI-NN) model that improves the interpretability of the black-box model while maintaining accuracy and the second is a mixed-integer quadratic optimization (MIO) model that considers more forms of feature variable expressions in an additive white-box model. The proposed approaches address the tradeoff between model interpretability and model accuracy in ship fuel consumption prediction. The experiment results demonstrate that the PI-NN model improves the interpretability of the black-box model while preserving accuracy. The MIO model considers alternative variable expressions, leading to the flexibility of the white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to explain how each feature value contributes to the predictions of the black-box model, thereby providing insights into how each value of feature variables affects fuel consumption. This study provides a solution to the tradeoff between model interpretability and model accuracy and can promote the application of data-driven models in ship fuel consumption prediction. Moreover, this study gives implications for the application of explainable machine learning models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的寄灵完成签到,获得积分20
1秒前
张培元发布了新的文献求助10
3秒前
3秒前
吉他独奏手完成签到,获得积分10
3秒前
天天快乐应助不安的依风采纳,获得10
3秒前
张培元完成签到,获得积分10
7秒前
8秒前
qinandi124完成签到,获得积分10
8秒前
9秒前
zisui完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
过冬完成签到,获得积分10
16秒前
17秒前
17秒前
愉快半烟发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
20秒前
22秒前
fb12000发布了新的文献求助10
22秒前
王鹤霏完成签到,获得积分10
22秒前
xzj发布了新的文献求助10
22秒前
fb12000发布了新的文献求助10
22秒前
吐金纳发布了新的文献求助20
23秒前
Noah完成签到 ,获得积分0
23秒前
24秒前
24秒前
木偶人完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
fb12000发布了新的文献求助10
25秒前
fb12000发布了新的文献求助10
26秒前
ding应助小徐徐爱学习采纳,获得10
26秒前
27秒前
英俊水池发布了新的文献求助10
28秒前
充电宝应助HU采纳,获得10
28秒前
可爱的函函应助musejie采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488