Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction

可解释性 黑匣子 燃料效率 特征(语言学) 灵活性(工程) 计算机科学 变量(数学) 白盒子 消费(社会学) 广义加性模型 预测建模 人工智能 机器学习 数学优化 工程类 数学 汽车工程 统计 数学分析 社会科学 语言学 哲学 社会学
作者
Haoqing Wang,Ran Yan,Shuaian Wang,Lu Zhen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:157: 104361-104361 被引量:3
标识
DOI:10.1016/j.trc.2023.104361
摘要

Ship fuel consumption is a major component of maritime transport costs and most of its emissions are harmful to the environment. Hence, it is essential to build an accurate ship fuel consumption prediction model, thereby providing reference to the navigation operations. However, maritime industry experts are wary of advanced black-box models since they cannot interpret the outcomes of these models. The application of advanced black-box models in the shipping industry remains limited and it is necessary to develop both accurate and interpretable ship fuel consumption prediction models. This study uses domain knowledge to develop two innovative methods for predicting ship fuel consumption—the first is a physics-informed neural network (PI-NN) model that improves the interpretability of the black-box model while maintaining accuracy and the second is a mixed-integer quadratic optimization (MIO) model that considers more forms of feature variable expressions in an additive white-box model. The proposed approaches address the tradeoff between model interpretability and model accuracy in ship fuel consumption prediction. The experiment results demonstrate that the PI-NN model improves the interpretability of the black-box model while preserving accuracy. The MIO model considers alternative variable expressions, leading to the flexibility of the white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to explain how each feature value contributes to the predictions of the black-box model, thereby providing insights into how each value of feature variables affects fuel consumption. This study provides a solution to the tradeoff between model interpretability and model accuracy and can promote the application of data-driven models in ship fuel consumption prediction. Moreover, this study gives implications for the application of explainable machine learning models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuiyu完成签到,获得积分20
刚刚
赵赵赵发布了新的文献求助10
1秒前
可爱的函函应助赵赵赵采纳,获得10
3秒前
唯梦完成签到 ,获得积分10
4秒前
4秒前
不要长胖完成签到,获得积分20
5秒前
6秒前
梓唯忧完成签到 ,获得积分10
11秒前
13秒前
mxh完成签到 ,获得积分10
14秒前
Doraemon完成签到,获得积分10
14秒前
MingqingFang完成签到,获得积分10
16秒前
Yellue发布了新的文献求助10
19秒前
22秒前
orixero应助小库的咖喱采纳,获得10
24秒前
28秒前
九姑娘完成签到 ,获得积分10
28秒前
穷且爱睡不坠青云之志完成签到,获得积分10
30秒前
Imp完成签到,获得积分10
33秒前
CYY发布了新的文献求助10
34秒前
科研通AI5应助大虫子采纳,获得10
35秒前
小哇发布了新的文献求助10
37秒前
守墓人完成签到 ,获得积分10
40秒前
41秒前
脑洞疼应助超级的尔蓝采纳,获得10
44秒前
44秒前
46秒前
兔子先生发布了新的文献求助10
47秒前
48秒前
驿寄梅花发布了新的文献求助10
49秒前
爆米花应助杨冰采纳,获得10
50秒前
Gypsy发布了新的文献求助10
50秒前
重要问夏完成签到 ,获得积分10
51秒前
赵纤发布了新的文献求助30
51秒前
Ava应助JWonder采纳,获得10
55秒前
1分钟前
1分钟前
lr发布了新的文献求助30
1分钟前
lJH完成签到,获得积分10
1分钟前
iNk应助袋鼠采纳,获得20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648