材料科学
纳米复合材料
聚丙烯酰胺
傅里叶变换红外光谱
硅胶
化学工程
复合材料
高分子化学
工程类
作者
Xinying Cui,Chengwen Wang,Weian Huang,Shifeng Zhang,Haiqun Chen,Wu Bo,Donghui Qin,Xin Zheng
出处
期刊:ACS omega
[American Chemical Society]
日期:2023-10-13
卷期号:8 (42): 39401-39407
被引量:1
标识
DOI:10.1021/acsomega.3c05025
摘要
The nanocomposite gel system has been successfully applied as a water shutoff agent to enhance oil recovery (EOR) or for plugging to control lost circulation events. In this study, the silica/polyacrylamide nanocomposite was synthesized via in situ free radical polymerization of acrylamide (AM) monomers in the presence of silica nanoparticles. The composite was cross-linked with polyethylenimine to prepare a high-strength hydrogel. The viscosity test was conducted to determine the gelation time of the gel. Rheological measurements and sand pack breakthrough pressure tests were carried out to measure the gel strength. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and scanning electron microscopy (SEM) tests were adopted to characterize the structure and morphology of the gel. The results show that compared to polyacrylamide (PAM) gel, the gelation time of the nanocomposite gel will decrease with increasing gel elasticity modulus, and the breakthrough pressure of the nanocomposite gel is 29.82 MPa, which increased by 65%. As shown in the ATR-FTIR test, this can be attributed to the presence of multiple hydrogen bonds for the PAM molecule with both silica and quartz sand particles. In the composite gel, hydrogen bonding mainly forms between the O atoms of PAM and the H atom on the surface of silica, enhancing gel strength and elasticity modulus with more cross-linking density and less porosity. Moreover, H bonding between additional -NH2 of PAM and quartz sand particles helps improve gel plugging pressure. However, in the silica and PAM mixture gel, the H bonding of silica occupies -NH2 of PAM, which became unavailable to attach on the sand surface, reducing the breakthrough pressure by 30%, although it can enhance the rheological strength. This study suggests that in situ composite of silica in PAM can not only greatly improve gel rheological strength but also help maintain the strong adhesion of PAM molecules onto quartz sand, resulting in better plugging performance in the sand reservoir.
科研通智能强力驱动
Strongly Powered by AbleSci AI