材料科学
氧化还原
阴极
快离子导体
离子键合
密度泛函理论
电化学
X射线光电子能谱
离子
化学工程
化学物理
电解质
电极
化学
物理化学
计算化学
工程类
有机化学
冶金
作者
Yifan Zhou,Guofu Xu,Jiande Lin,Yangpu Zhang,Guozhao Fang,Jiang Zhou,Xinxin Cao,Shuquan Liang
标识
DOI:10.1002/adma.202304428
摘要
Na-superionic-conductor (NASICON)-type cathodes (e.g., Na3 V2 (PO4 )3 ) have attracted extensive attention due to their open and robust framework, fast Na+ mobility, and superior thermal stability. To commercialize sodium-ion batteries (SIBs), higher energy density and lower cost requirements are urgently needed for NASICON-type cathodes. Herein, Na3.5 V1.5 Fe0.5 (PO4 )3 (NVFP) is designed by an Fe-substitution strategy, which not only reduces the exorbitant cost of vanadium, but also realizes high-voltage multielectron reactions. The NVFP cathode can deliver extraordinary capacity (148.2 mAh g-1 ), and decent cycling durability up to 84% after 10 000 cycles at 100 C. In situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy characterizations reveal reversible structural evolution and redox processes (Fe2+ /Fe3+ , V3+ /V4+ , and V4+ /V5+ ) during electrochemical reactions. The low ionic-migration energy barrier and ideal Na+ -diffusion kinetics are elucidated by density functional theory calculations. Combined with electron paramagnetic resonance spectroscopy, Fe with unpaired electrons in the 3d orbital is inseparable from the higher-valence redox activation. More competitively, coupling with a hard carbon (HC) anode, HC//NVFP full cells demonstrate high-rate capability and long-duration cycling lifespan (3000 stable cycles at 50 C), along with material-level energy density up to 304 Wh kg-1 . The present work can provide new perspectives to accelerate the commercialization of SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI