DDEL-15. EXPLORING THE USE OF MACHINE LEARNING TO PREDICT BLOOD BRAIN BARRIER PERMEABILITY OF DRUG MOLECULES

人工智能 计算机科学 学习迁移 机器学习 卷积神经网络 深度学习 支持向量机 人工神经网络
作者
Megan Amber Lim,Wael Hassaneen Mostafa
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v104-v104
标识
DOI:10.1093/neuonc/noad179.0394
摘要

Abstract The blood-brain barrier (BBB) is a selective boundary of the central nervous system (CNS) that plays a critical role in protecting the brain microenvironment by allowing passage of certain molecules. Clinical experiments accurately determine which chemotherapy drugs effectively cross the BBB to reach the tumor site but are also time consuming and labor intensive. Machine learning offers the ability to rapidly screen large datasets of drug molecules and assess their potential for CNS therapeutic effect. The goal of this study is to compare the performance across machine learning, deep learning, and transfer learning methods in predicting BBB permeability on public drug datasets. The dataset used for training and validation was composed of 7,807 compounds compiled from 50 published resources. The machine and deep learning methods used in this study included support vector machines (SVMs), deep neural networks (DNNs), and graph convolutional neural networks (GCNNs). For transfer learning, we first trained DNN models to a single quantum chemical property before appending neural network layers and retraining to the new task of BBB permeability. The prediction accuracies on the validation set for SVM, DNN, GCNN, transfer learning of polarizability, and transfer learning of dipole moment were 82.33%, 83.09%, 87.14%, 76.89%, and 70.23%, respectively. Overall, the results indicate that GCNN was the best performing model. This highlights GCNNs ability to learn the molecular features most relevant to the predictive task in the first stage of the algorithm. Future work entails expanding the set of input features to include key chemical and structural information such as the presence or absence of certain functional groups as well as training more transfer learning models to other quantum chemical properties. This study further motivates the predictive capability of machine learning methods in identifying drug compounds with potential CNS-activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soyo完成签到,获得积分20
刚刚
学术小垃圾完成签到,获得积分10
刚刚
刚刚
冰魂应助有点儿小库采纳,获得20
刚刚
刚刚
1秒前
xiayil完成签到,获得积分10
1秒前
周多多发布了新的文献求助30
1秒前
2秒前
2秒前
刘星宇发布了新的文献求助10
2秒前
3秒前
tianliyan发布了新的文献求助10
3秒前
EMMA完成签到,获得积分10
3秒前
深情安青应助牛奶加燕麦采纳,获得10
4秒前
失眠醉易应助方百招采纳,获得20
4秒前
夏来应助可靠盼旋采纳,获得10
4秒前
Hello应助萨克麦迪采纳,获得10
4秒前
5秒前
有点儿小库完成签到,获得积分20
5秒前
SZY发布了新的文献求助10
5秒前
lezongyang发布了新的文献求助10
5秒前
5秒前
EMMA发布了新的文献求助10
5秒前
赫连又蓝发布了新的文献求助30
7秒前
8秒前
yurbb发布了新的文献求助10
8秒前
飞乐扣完成签到 ,获得积分10
9秒前
笑望沧溟发布了新的文献求助10
9秒前
莫铭发布了新的文献求助10
10秒前
10秒前
科研通AI5应助栗子采纳,获得10
11秒前
房檐下发布了新的文献求助10
11秒前
11秒前
12秒前
duguqiubai4完成签到,获得积分10
13秒前
JamesPei应助迷路中的骑手采纳,获得10
13秒前
Jessie发布了新的文献求助10
14秒前
lhr完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396