亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey of Learning-based Automated Program Repair

计算机科学 工作流程 人工智能 杠杆(统计) 代码评审 机器学习 软件工程 深度学习 正确性 源代码 代码库 软件 软件开发 静态程序分析 程序设计语言 数据库
作者
Quanjun Zhang,Chunrong Fang,Yuxiang Ma,Weisong Sun,Zhenyu Chen
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:33 (2): 1-69 被引量:47
标识
DOI:10.1145/3631974
摘要

Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this article, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our article can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at the repository: https://github.com/iSEngLab/AwesomeLearningAPR .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪的发布了新的文献求助10
1秒前
4秒前
7秒前
7秒前
wang发布了新的文献求助30
10秒前
1337完成签到,获得积分10
10秒前
大气小天鹅完成签到 ,获得积分10
10秒前
cwy发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助cwy采纳,获得10
19秒前
zjq发布了新的文献求助10
19秒前
cwy完成签到,获得积分10
23秒前
好了没了发布了新的文献求助10
26秒前
zjq完成签到,获得积分10
27秒前
29秒前
脑洞疼应助乐弈采纳,获得10
29秒前
31秒前
34秒前
快乐的胖子应助u7iui采纳,获得30
36秒前
40秒前
乐弈发布了新的文献求助10
43秒前
年鱼精完成签到 ,获得积分10
43秒前
SciGPT应助木禾火采纳,获得10
50秒前
闪闪的硬币完成签到 ,获得积分10
52秒前
bing完成签到 ,获得积分10
53秒前
54秒前
哈基米德应助科研通管家采纳,获得28
55秒前
乐乐应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
55秒前
55秒前
55秒前
55秒前
55秒前
59秒前
xiebin完成签到 ,获得积分10
1分钟前
猫猫发布了新的文献求助10
1分钟前
1分钟前
dxl完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130136
求助须知:如何正确求助?哪些是违规求助? 3667046
关于积分的说明 11600616
捐赠科研通 3365440
什么是DOI,文献DOI怎么找? 1849067
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828302