A Short-term Demand of Bike-sharing Forecasting Model Based on Spatio-temporal Graph Data

共享单车 计算机科学 深度学习 卷积神经网络 图形 数据建模 调度(生产过程) 公共交通 循环神经网络 数据挖掘 人工智能 人工神经网络 运输工程 工程类 数据库 理论计算机科学 运营管理
作者
Chaofei Song,Shenghan Zhou,Wenbing Chang,Yiyong Xiao,Yu Fu,Linchao Yang
标识
DOI:10.1109/icac57885.2023.10275167
摘要

The research aims to use deep learning to develop a site-level bike-sharing demand prediction model to address the uneven distribution of free-flowing vehicles due to the growth of bike-sharing into the market. In recent years, cycling has become an important form of supportive public transportation, especially for “last mile” commuting. However, with the increase of bike-sharing activities in the market, some free-flowing vehicles are facing different spatial and temporal distribution problems. To overcome these challenges, we use a Graph Convolutional Neural Networks (GCN) to capture the spatial relationships between bike-sharing sites, a Gate Recurrent Unit (GRU) to capture the temporal proximity and periodicity of each site's historical data, and an Attention mechanism to dynamically capture the temporal dependencies and improve the model's performance. It is shown that the proposed approach has better performance compared to other models, as demonstrated by MAE and RMSE measurements, which have signals of 1.09 and 2.21 on this dataset, respectively. the error is reduced by at least 21.4% compared to other comparative models, showing strong predictive performance. Thus, this paper implements a deep learning model that can accurately predict the demand of bike-sharing stations, which provides a decision basis for solving the scheduling of unbalanced spatial and temporal distribution of bike-sharing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到,获得积分20
刚刚
Natforever完成签到 ,获得积分20
刚刚
机灵柚子发布了新的文献求助10
1秒前
1秒前
852应助害羞的夏旋采纳,获得10
1秒前
薄荷绿茶2发布了新的文献求助10
2秒前
思源应助要减肥语芹采纳,获得10
3秒前
azw完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
小陶发布了新的文献求助10
4秒前
富二蛋完成签到,获得积分20
4秒前
林荫下的熊完成签到,获得积分10
4秒前
5秒前
雄图完成签到,获得积分10
5秒前
豆豆发布了新的文献求助10
6秒前
tao发布了新的文献求助10
6秒前
kiki发布了新的文献求助30
6秒前
偌佟发布了新的文献求助10
7秒前
啦啦发布了新的文献求助10
7秒前
mrjohn发布了新的文献求助10
7秒前
wanci应助读书的时候采纳,获得10
8秒前
小龙发布了新的文献求助10
8秒前
9秒前
Sharon完成签到,获得积分10
9秒前
9秒前
boilday发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
孙燕应助yipp采纳,获得50
10秒前
子木发布了新的文献求助10
10秒前
QS完成签到,获得积分10
11秒前
领导范儿应助协和_子鱼采纳,获得10
11秒前
折花几慕应助Re采纳,获得10
11秒前
听闻墨笙完成签到,获得积分10
12秒前
13秒前
wanci应助月光族采纳,获得10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093571
求助须知:如何正确求助?哪些是违规求助? 3632181
关于积分的说明 11512448
捐赠科研通 3342879
什么是DOI,文献DOI怎么找? 1837359
邀请新用户注册赠送积分活动 905079
科研通“疑难数据库(出版商)”最低求助积分说明 822934