The diagnosis performance of convolutional neural network in the detection of pulmonary nodules: a systematic review and meta-analysis

医学 诊断优势比 荟萃分析 接收机工作特性 肺癌 卷积神经网络 科克伦图书馆 医学诊断 放射科 研究异质性 人工智能 人口 内科学 计算机科学 环境卫生
作者
X. Zhang,Bo Liu,Kefu Liu,Lina Wang
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (12): 2987-2998 被引量:6
标识
DOI:10.1177/02841851231201514
摘要

Background Pulmonary nodules are an early imaging indication of lung cancer, and early detection of pulmonary nodules can improve the prognosis of lung cancer. As one of the applications of machine learning, the convolutional neural network (CNN) applied to computed tomography (CT) imaging data improves the accuracy of diagnosis, but the results could be more consistent. Purpose To evaluate the diagnostic performance of CNN in assisting in detecting pulmonary nodules in CT images. Material and Methods PubMed, Cochrane Library, Web of Science, Elsevier, CNKI and Wanfang databases were systematically retrieved before 30 April 2023. Two reviewers searched and checked the full text of articles that might meet the criteria. The reference criteria are joint diagnoses by experienced physicians. The pooled sensitivity, specificity and the area under the summary receiver operating characteristic curve (AUC) were calculated by a random-effects model. Meta-regression analysis was performed to explore potential sources of heterogeneity. Results Twenty-six studies were included in this meta-analysis, involving 2,391,702 regions of interest, comprising segmented images with a few wide pixels. The combined sensitivity and specificity values of the CNN model in detecting pulmonary nodules were 0.93 and 0.95, respectively. The pooled diagnostic odds ratio was 291. The AUC was 0.98. There was heterogeneity in sensitivity and specificity among the studies. The results suggested that data sources, pretreatment methods, reconstruction slice thickness, population source and locality might contribute to the heterogeneity of these eligible studies. Conclusion The CNN model can be a valuable diagnostic tool with high accuracy in detecting pulmonary nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟豆806完成签到 ,获得积分10
刚刚
严谨严谨严谨完成签到 ,获得积分10
刚刚
灯座发布了新的文献求助10
1秒前
爱吃冻梨完成签到 ,获得积分10
2秒前
wanghao完成签到 ,获得积分10
3秒前
wzz关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助10
7秒前
麦子完成签到 ,获得积分10
7秒前
王饱饱完成签到 ,获得积分10
9秒前
彭于晏应助灯座采纳,获得10
10秒前
李大龙完成签到,获得积分10
11秒前
小瑄完成签到 ,获得积分10
11秒前
芝士大王完成签到 ,获得积分10
12秒前
14秒前
嘻嗷完成签到,获得积分10
15秒前
英俊的铭应助不如看海采纳,获得10
16秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
22秒前
xinghe123完成签到 ,获得积分10
23秒前
花花完成签到 ,获得积分10
23秒前
imcwj完成签到 ,获得积分10
23秒前
在九月完成签到 ,获得积分10
23秒前
24秒前
24秒前
Mireia完成签到,获得积分10
26秒前
wangzhenghua完成签到 ,获得积分10
27秒前
李爱国应助纯真怜梦采纳,获得10
30秒前
量子星尘发布了新的文献求助10
32秒前
王昭完成签到 ,获得积分10
35秒前
隐形曼青应助ff采纳,获得10
35秒前
乐观的从云完成签到,获得积分10
36秒前
十月的天空完成签到,获得积分10
40秒前
KJ完成签到,获得积分10
41秒前
hhh完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426968
求助须知:如何正确求助?哪些是违规求助? 4540537
关于积分的说明 14172346
捐赠科研通 4458456
什么是DOI,文献DOI怎么找? 2445019
邀请新用户注册赠送积分活动 1436061
关于科研通互助平台的介绍 1413552