平滑度
趋化性
焊剂(冶金)
不平等
物理
数学分析
数学
化学
生物化学
受体
有机化学
摘要
.We prove two new functional inequalities of the forms \(\int_G \varphi (\psi - \overline{\psi }) \leq \frac{1}{a}\int_G \psi \ln (\frac{\;\psi \;}{ \overline{\psi }}) + \frac{a}{4\beta_0} \left\{ \int_G \psi \right\}\int_G|\nabla \varphi |^2\) and \(\int_G \psi \ln (\frac{\;\psi \;}{ \overline{\psi }}) \leq \frac{1}{\beta_0} \{ \int_G \psi \}\int_G |\nabla \ln (\psi )|^2\) for any finitely connected, bounded \(C^2\)-domain \(G \subseteq \mathbb{R}^2\), a constant \(\beta_0 \gt 0\), any \(a \gt 0\), and sufficiently regular functions \(\varphi\), \(\psi\). We then illustrate their usefulness by proving long time stabilization and eventual smoothness properties for certain generalized solutions to the chemotaxis-Navier–Stokes system \(\{ n_t + u \cdot \nabla n = \Delta n - \nabla \cdot (nS(x,n,c) \nabla c); c_t + u\cdot \nabla c = \Delta c - n f(c); u_t + (u\cdot \nabla ) u = \Delta u + \nabla P+n \nabla \phi, \nabla \cdot u=0 \}\) on a smooth, bounded, convex domain \(\Omega \subseteq \mathbb{R}^2\) with no-flux boundary conditions for \(n\) and \(c\) as well as a Dirichlet boundary condition for \(u\). We further allow for a general chemotactic sensitivity \(S\) attaining values in \(\mathbb{R}^{2\times 2}\) as opposed to a scalar one.Keywordsfunctional inequalitiesvariational methodsTrudinger–Moser inequalityNavier–Stokeschemotaxisgeneralized solutionseventual smoothnessMSC codes35K5535A2335A1535J2035D3035Q9235Q3592C17
科研通智能强力驱动
Strongly Powered by AbleSci AI