亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bathymetry of the Gulf of Mexico Predicted With Multilayer Perceptron From Multisource Marine Geodetic Data

水深测量 大地基准 地质学 遥感 海洋学 大地测量学
作者
Shuai Zhou,Xin Liu,Jinyun Guo,Xin Jin,Lei Yang,Yu Sun,Heping Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:11
标识
DOI:10.1109/tgrs.2023.3328035
摘要

Based on the nonlinear relationship between multi-source marine geodetic data and seafloor topography, the multilayer perceptron (MLP) neural network is introduced into bathymetry prediction to improve the accuracy of bathymetry model. This method not only integrates multi-source marine geodetic data, but also takes into consideration the nonlinear relationships between these data and seafloor topography. Firstly, we utilize terrain information and the multi-source marine geodetic data (vertical deflection, gravity anomaly, vertical gravity gradient, mean dynamic topography) around the shipborne sounding control points within a 6'×6' grid as input data, while using the actual bathymetry at control points as output data to train the MLP neural network model. Subsequently, inputting the input data from the central point of a 1'×1' grid within the study area into the MLP model to predict the bathymetry at the grid's center. Then, based on the predicted bathymetry, a bathymetry model is established of this research area. Utilizing this methodology, this paper establishes the Gulf of Mexico Bathymetric Chart of the Oceans (MBCO1) model. Due to the influence of complex seafloor topography and the distribution of shipborne bathymetry points, there are differences in training and prediction among different regions. To address this, this study divides the research area into five sub-regions (A, B, C, D, and E) and establishes bathymetry model (MBCO2 models) through each sub-region. Finally, we evaluated the accuracy and effectiveness of this method by comparing it with existing bathymetry models, as well as shipboard depths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx发布了新的文献求助10
1秒前
Ava应助野生菜狗采纳,获得30
1秒前
Luffy发布了新的文献求助10
1秒前
活泼的夏旋完成签到 ,获得积分10
2秒前
坚定背包完成签到,获得积分10
3秒前
nove999完成签到 ,获得积分10
5秒前
呆萌念云完成签到 ,获得积分10
6秒前
所所应助林钰浩采纳,获得10
6秒前
科研通AI6应助absb采纳,获得10
10秒前
科研通AI6应助absb采纳,获得10
10秒前
岚12完成签到 ,获得积分10
10秒前
Hello应助absb采纳,获得10
10秒前
科研通AI6应助absb采纳,获得10
10秒前
科研通AI6应助absb采纳,获得10
10秒前
10秒前
11秒前
平淡如天完成签到,获得积分10
12秒前
zzy完成签到 ,获得积分10
16秒前
野生菜狗发布了新的文献求助30
17秒前
传奇3应助absb采纳,获得10
18秒前
汉堡包应助absb采纳,获得10
18秒前
上官若男应助absb采纳,获得10
18秒前
852应助absb采纳,获得10
18秒前
科研通AI6应助absb采纳,获得10
18秒前
CipherSage应助absb采纳,获得10
18秒前
FashionBoy应助absb采纳,获得10
19秒前
完美世界应助absb采纳,获得10
19秒前
JamesPei应助absb采纳,获得10
19秒前
科研通AI6应助absb采纳,获得10
19秒前
斯文败类应助LMX采纳,获得10
22秒前
25秒前
所所应助Marciu33采纳,获得30
25秒前
27秒前
32秒前
34秒前
Luffy完成签到,获得积分10
34秒前
dilli完成签到 ,获得积分10
39秒前
40秒前
没想到羽毛关注了科研通微信公众号
46秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356425
求助须知:如何正确求助?哪些是违规求助? 4488220
关于积分的说明 13971856
捐赠科研通 4389076
什么是DOI,文献DOI怎么找? 2411395
邀请新用户注册赠送积分活动 1403924
关于科研通互助平台的介绍 1377828