A Deep Learning Approach Based on Physical Constraints for Predicting Soil Moisture in Unsaturated Zones

深度学习 包气带 领域(数学) 人工智能 计算机科学 先验与后验 均方误差 理查兹方程 机器学习 土壤科学 环境科学 数学 土壤水分 统计 哲学 认识论 纯数学
作者
Yi Wang,Wenke Wang,Zhitong Ma,Ming Zhao,Wanxin Li,Xinyue Hou,Jie Li,Fei Ye,Weigang Ma
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11)
标识
DOI:10.1029/2023wr035194
摘要

Abstract Water transport in the unsaturated zone is an important part of the hydrological cycle and is the link between the atmosphere‒soil‐groundwater for material and energy transport. The accurate prediction of soil moisture (SM) is essential for the rational exploitation of water resources. Data‐driven deep learning methods are widely used in many fields; however, the lack of physical mechanisms limits their application in hydrological fields, especially for SM prediction in unsaturated zones. To solve this problem, this study proposes a new deep learning method that introduces the water balance principle, Richard's equation, and SM boundary conditions as constraints to construct the new loss function that guides the training process of deep learning, called physics‐informed deep learning (PIDL). In tests consisting of a large number of data sets acquired from in situ observation sites in the field, PIDL exhibits higher accuracy than ordinary deep learning (long short‐term memory) and physical models, with 51.03% and 53.46% reduction in root mean square error of SM prediction, respectively. PIDL performance significantly improved in predicting scenarios that are difficult for ordinary deep learning to handle, such as sparse data sets, extreme values, and mutated values. In addition, PIDL maintains high accuracy over a longer prediction period. The addition of physical mechanisms allows deep learning to mine patterns not only from the data itself but also from a priori physical theoretical knowledge for guidance, and this hybrid modeling approach can also be generalized to prediction problems in other hydrological domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qs发布了新的文献求助30
3秒前
ping777755发布了新的文献求助10
3秒前
在水一方应助chen采纳,获得10
5秒前
5秒前
6秒前
6秒前
Qixiner应助科研小辣椒采纳,获得10
6秒前
7秒前
8秒前
阔达冰菱完成签到,获得积分10
10秒前
大田完成签到 ,获得积分10
10秒前
Coke发布了新的文献求助10
11秒前
Coke发布了新的文献求助10
11秒前
噜啦啦发布了新的文献求助10
11秒前
MZ发布了新的文献求助260
11秒前
不安青牛应助qs采纳,获得20
12秒前
光亮向雁完成签到 ,获得积分10
12秒前
不安青牛应助qs采纳,获得20
12秒前
不安青牛应助qs采纳,获得20
12秒前
科研通AI2S应助XuchaoD采纳,获得10
14秒前
14秒前
KevinHill0924发布了新的文献求助20
14秒前
情怀应助年轻的外绣采纳,获得10
16秒前
闹闹爸爸完成签到,获得积分10
17秒前
落叶起舞发布了新的文献求助80
17秒前
穆萝完成签到,获得积分10
18秒前
19秒前
19秒前
噜啦啦完成签到,获得积分10
20秒前
ping777755完成签到,获得积分10
20秒前
21秒前
上官若男应助骆驼顶顶采纳,获得10
23秒前
26秒前
大妙妙发布了新的文献求助10
26秒前
阿斯顿发规划局完成签到,获得积分10
28秒前
30秒前
天才小能喵应助王亦乐采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
31秒前
lily应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2487504
求助须知:如何正确求助?哪些是违规求助? 2148417
关于积分的说明 5483180
捐赠科研通 1869418
什么是DOI,文献DOI怎么找? 929374
版权声明 563235
科研通“疑难数据库(出版商)”最低求助积分说明 497018