亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral Image Classification Using Geometric Spatial–Spectral Feature Integration: A Class Incremental Learning Approach

高光谱成像 计算机科学 人工智能 遗忘 班级(哲学) 模式识别(心理学) 特征(语言学) 过程(计算) 机器学习 遥感 地理 哲学 语言学 操作系统
作者
Jing Bai,Ruotong Liu,Hai‐Sheng Zhao,Zhu Xiao,Zheng Chen,Wei Shi,Yong Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2023.3333005
摘要

Hyperspectral image classification (HSIC) has attracted widespread attention due to its important application in environment alterations and geophysical disaster monitoring. However, surface cultivation is not static as time passes, which leads to different hyperspectral images information collected from the same area at different time periods. Therefore, researchers are currently eager to construct a HSIC model that continuously acquires new classes of data. During the continuous learning process, the model is expected to not only effective in extracting unique spatial-spectral features of the hyperspectral image, but also ensures the ability to maintain the old classes knowledge while learning new data. To achieve this purpose, we propose a method which based on geometric spatial-spectral feature integration network with class incremental learning (GS2FIN-CIL) framework in continuous learning to make the model adaptable to new classes data and not overly forgetting the old classes knowledge during the training process. We conduct extensive experiments with the proposed GS2FIN-CIL method on widely-used hyperspectral datasets including Indian Pines, PaviaU and Salinas. The experimental results show that our GS2FIN-CIL method can achieve significantly improved results compared to current state-of-the-art class incremental learning methods, allowing for efficient adaptation and utilization of spatial-spectral features in processing new classes of hyperspectral images and alleviating the problem of catastrophic forgetting of learned old classes knowledge. The GS2FIN-CIL method could be successfully applied to the challenge of adding new classes data in HSIC task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性半山完成签到 ,获得积分10
14秒前
35秒前
看不了一点文献举报求助违规成功
36秒前
盖亚奇举报求助违规成功
36秒前
Jacky举报求助违规成功
36秒前
36秒前
dxldxl发布了新的文献求助150
57秒前
1分钟前
道天完成签到,获得积分10
1分钟前
龙06发布了新的文献求助30
1分钟前
1分钟前
龙06完成签到,获得积分10
1分钟前
zzz完成签到,获得积分10
1分钟前
看不了一点文献举报求助违规成功
1分钟前
Criminology34举报求助违规成功
1分钟前
GPTea举报求助违规成功
1分钟前
1分钟前
ajing完成签到,获得积分10
1分钟前
a3265640发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
啊湫超爱学习完成签到,获得积分10
2分钟前
2分钟前
Crystal发布了新的文献求助10
2分钟前
坚强的平卉应助高晨焜采纳,获得10
2分钟前
高晨焜完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
ChenLan发布了新的文献求助10
3分钟前
lisa发布了新的文献求助10
3分钟前
kukudou2发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
5分钟前
你嵙这个期刊没买完成签到 ,获得积分10
5分钟前
5分钟前
GingerF应助Jsihao采纳,获得50
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407919
求助须知:如何正确求助?哪些是违规求助? 4525355
关于积分的说明 14101684
捐赠科研通 4439241
什么是DOI,文献DOI怎么找? 2436668
邀请新用户注册赠送积分活动 1428645
关于科研通互助平台的介绍 1406737