Projective Independence Tests in High Dimensions: the Curses and the Cures

数学 投射试验 独立性(概率论) 数理经济学 统计
作者
Yaowu Zhang,Liping Zhu
出处
期刊:Biometrika [Oxford University Press]
被引量:2
标识
DOI:10.1093/biomet/asad070
摘要

Summary Testing independence between high-dimensional random vectors is fundamentally different from testing independence between univariate random variables. Taking the projection correlation as an example, it suffers from at least three problems. First, it has a high computational complexity of O{n3(p+q)}, where n, p and q are the sample size and dimensions of the random vectors; this limits its usefulness substantially when n is extremely large. Second, the asymptotic null distribution of the projection correlation test is rarely tractable; therefore, random permutations are often suggested as a means of approximating the asymptotic null distribution, which further increases the complexity of implementing independence tests. Third, the power performance of the projection correlation test deteriorates in high dimensions. To address these issues, the projection correlation is improved by using a modified weight function, which reduces the complexity to O{n2(p+q)}. We estimate the improved projection correlation with U-statistic theory. Importantly, its asymptotic null distribution is standard normal, thanks to the high dimesnionality of the random vectors. This expedites the implementation of independence tests substantially. To enhance the power performance in high dimensions, we propose incorporating a cross-validation procedure with feature screening into the projection correlation test. The implementation efficacy and power enhancement are confirmed through extensive numerical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
斜玉完成签到,获得积分10
1秒前
2秒前
龙飞凤舞完成签到,获得积分0
2秒前
red完成签到,获得积分10
2秒前
2秒前
yang发布了新的文献求助10
3秒前
科研通AI2S应助高铭泽采纳,获得10
3秒前
花卷发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Accept完成签到,获得积分10
4秒前
严以律己完成签到,获得积分10
5秒前
ding应助诺澜啊采纳,获得10
5秒前
5秒前
米糊完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
6秒前
笨笨的复天完成签到,获得积分10
6秒前
soosoo完成签到,获得积分10
7秒前
CDKSEVEN完成签到,获得积分20
8秒前
8秒前
8秒前
kyleaa发布了新的文献求助10
8秒前
白斯特完成签到,获得积分10
9秒前
罗是一完成签到,获得积分10
9秒前
领导范儿应助G蛋白偶联采纳,获得10
10秒前
严以律己发布了新的文献求助10
10秒前
学术混子发布了新的文献求助10
10秒前
调皮的荔枝完成签到,获得积分10
11秒前
whn完成签到,获得积分20
12秒前
12秒前
milkymayi完成签到,获得积分10
13秒前
深情安青应助元谷雪采纳,获得10
14秒前
14秒前
15秒前
NexusExplorer应助有且仅有采纳,获得10
16秒前
机智的灵萱完成签到,获得积分10
16秒前
活泼开朗完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
“animal - derived protein extraction separation”,“animal - derived protein structure identification”,“animal - derived protein activity” 520
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274594
求助须知:如何正确求助?哪些是违规求助? 3803726
关于积分的说明 11919277
捐赠科研通 3450561
什么是DOI,文献DOI怎么找? 1892156
邀请新用户注册赠送积分活动 942991
科研通“疑难数据库(出版商)”最低求助积分说明 846724