GAC-SleepNet: A dual-structured sleep staging method based on graph structure and Euclidean structure

计算机科学 图形 人工智能 卷积神经网络 模式识别(心理学) 对偶(语法数字) 欧几里德距离 多层感知器 人工神经网络 机器学习 理论计算机科学 艺术 文学类
作者
Tianxing Li,Yulin Gong,Yudan Lv,Fatong Wang,Mingjia Hu,Yinke Wen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107477-107477 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107477
摘要

Sleep staging is a precondition for the diagnosis and treatment of sleep disorders. However, how to fully exploit the relationship between spatial features of the brain and sleep stages is an important task. Many current classical algorithms only extract the characteristic information of the brain in the Euclidean space without considering other spatial structures. In this study, a sleep staging network named GAC-SleepNet is designed. GAC-SleepNet uses the characteristic information in the dual structure of the graph structure and the Euclidean structure for the classification of sleep stages. In the graph structure, this study uses a graph convolutional neural network to learn the deep features of each sleep stage and converts the features in the topological structure into feature vectors by a multilayer perceptron. In the Euclidean structure, this study uses convolutional neural networks to learn the temporal features of sleep information and combine attention mechanism to portray the connection between different sleep periods and EEG signals, while enhancing the description of global features to avoid local optima. In this study, the performance of the proposed network is evaluated on two public datasets. The experimental results show that the dual spatial structure captures more adequate and comprehensive information about sleep features and shows advancement in terms of different evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助利于蓄力采纳,获得10
刚刚
CCC发布了新的文献求助10
1秒前
1秒前
徐徐科研一百分完成签到,获得积分10
2秒前
2秒前
科研通AI5应助鹅帮逮采纳,获得10
2秒前
2秒前
科研专家发布了新的文献求助10
3秒前
3秒前
完美思菱完成签到,获得积分10
3秒前
4秒前
缥缈海云完成签到,获得积分10
4秒前
852应助liber采纳,获得10
4秒前
4秒前
狗子爱吃桃桃完成签到 ,获得积分10
4秒前
yy发布了新的文献求助150
5秒前
5秒前
YH发布了新的文献求助10
5秒前
5秒前
6秒前
LOKI完成签到,获得积分10
6秒前
烟花应助天青111采纳,获得10
6秒前
慕青应助电脑桌采纳,获得10
7秒前
wen完成签到,获得积分10
8秒前
9秒前
二猫发布了新的文献求助10
9秒前
9秒前
10秒前
red 哞发布了新的文献求助10
11秒前
火星上白风完成签到,获得积分10
11秒前
求助文献完成签到,获得积分10
12秒前
科研通AI6应助YH采纳,获得10
12秒前
12秒前
小马甲应助冰啊冰采纳,获得10
12秒前
王一豪发布了新的文献求助10
12秒前
13秒前
科研通AI5应助光亮机器猫采纳,获得10
13秒前
Zou谋完成签到,获得积分10
13秒前
Lucas应助快乐小白菜采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739