石墨烯
生物传感器
安培法
材料科学
核化学
傅里叶变换红外光谱
扫描电子显微镜
碳二亚胺
分析化学(期刊)
纳米技术
化学
化学工程
电化学
电极
色谱法
高分子化学
物理化学
复合材料
工程类
作者
Amit K. Yadav,Damini Verma,Pratima R. Solanki
标识
DOI:10.1021/acsabm.3c00464
摘要
In the present investigation, we reported a label-free and highly effective immunosensor for the first time employing a nanostructured molybdenum disulfide nanosheets@reduced graphene oxide (nMoS2 NS@rGO) nanohybrid interface for the determination of sperm protein 17 (Sp17), an emerging cancer biomarker. We synthesized the nMoS2 NS@rGO nanohybrid using a one-step hydrothermal technique and then functionalized it with 3-aminopropyltriethoxysilane (APTES). Furthermore, the anti-Sp17 monoclonal antibodies were covalently attached to the APTES/nMoS2 NS@rGO/indium tin oxide (ITO) electrode utilizing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxy succinimide (EDC-NHS) coupling chemistry. Bovine serum albumin (BSA) was then used to block nonspecific binding regions on the anti-Sp17/APTES/nMoS2 NS@rGO/ITO bioelectrode. The morphological and structural features of the synthesized nanohybrid and the modified electrodes were studied using transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray (EDX) composition studies, atomic force microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The immunoreaction between the Sp17 antigen and anti-Sp17 antibodies on the surface of the BSA/anti-Sp17/APTES/nMoS2 NS@rGO/ITO sensing bioelectrode was applied as the basis for the detection technique, which measured the electrocatalytic current and impedimetric response change. The designed BSA/anti-Sp17/APTES/nMoS2 NS@rGO/ITO bioelectrode showed improved amperometric and impedimetric biosensing performance in the response studies, including remarkable sensitivity (23.2 μA ng-1mL cm-2 and 0.48 kΩ mL ng-1 cm-2), wider linearity (0.05-8 and 1-8 ng mL-1), an excellent lower detection limit (0.13 and 0.23 ng mL-1), and a rapid response time of 20 min. The biosensor exhibited impressive storage durability lasting 7 weeks and showed remarkable precision in identifying Sp17 in serum samples from cancer patients, as confirmed using the enzyme-linked immunosorbent assay method.
科研通智能强力驱动
Strongly Powered by AbleSci AI