Distillate a Sparse-Meta Time Series Classifier for Open Radio Access Network-Based Cellular Vehicle-to-Everything

计算机科学 遗忘 人工智能 学习迁移 机器学习 哲学 语言学
作者
Le Sun,Jiancong Liang,Ghulam Muhammad
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 9262-9271 被引量:2
标识
DOI:10.1109/tvt.2023.3323279
摘要

Deep learning-based univariate time series classification can improve the user experience of Open Radio Access Network (RAN)-based Cellular Vehicle-to-Everything (CV2x). However,few institutes researching ORAD-based CV2x can satisfy the enormous demand of labeled data. This issue is known as few-shot learning. Thus, we deeply explore the issue of few-shot learning for ORAE-based CV2x. Meta-transfer learning is a good alternative to solving few-shot learning. Most of them, however, are still plagued by catastrophic forgetting. Numerous studies have demonstrated that deliberately applying gradient sparsity can significantly increase a meta-model's capacity for generalization. In this paper, we propose a pre-training framework named Distilling for Sparse-Meta-transfer Learning (DSML). It is a combination and enhancement of meta-transfer learning, multi-teacher knowledge distillation, and sparse Model-Agnostic Meta-Learning (sparse-MAML). It utilizes multi-teacher knowledge distillation to address the catastrophic forgetting in the meta-learning phase. Simultaneously, it utilizes sigmoid function to fundamentally address the gradient anomaly problem of sparse-MAML. We conducted ablation experiments on Sparse-MAML and prove that it can actually increase the meta-model's generalization capacity. We also compare DSML with the state-of-the-art algorithm in the univariate time series classification field. The results demonstrate that DSML performs better. Finally, we present two case studies of applying DSML to ORAN-based CV2x.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬九分酸完成签到,获得积分10
刚刚
淡然向松完成签到,获得积分10
刚刚
CarryZ8发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
1秒前
刘钱美子完成签到,获得积分10
1秒前
dreamdraver完成签到,获得积分10
2秒前
orange完成签到,获得积分10
3秒前
kk发布了新的文献求助10
4秒前
禾下乘凉完成签到,获得积分10
4秒前
5秒前
Aaron举报奥德修斯凡求助涉嫌违规
5秒前
6秒前
慕趣完成签到,获得积分10
7秒前
蟹蟹完成签到,获得积分10
7秒前
7秒前
8秒前
爆米花应助read采纳,获得10
8秒前
8秒前
17599839662完成签到,获得积分10
8秒前
9秒前
9秒前
LLeaf发布了新的文献求助30
10秒前
明理小土豆完成签到,获得积分10
10秒前
淀粉肠发布了新的文献求助10
11秒前
11秒前
丶DeI完成签到,获得积分10
11秒前
journey完成签到 ,获得积分10
11秒前
12秒前
12秒前
AmyDong发布了新的文献求助10
12秒前
慕趣发布了新的文献求助10
13秒前
13秒前
hututu发布了新的文献求助10
13秒前
星辰大海应助花生采纳,获得10
13秒前
觅兴完成签到,获得积分0
14秒前
14秒前
脑洞疼应助yeggoo采纳,获得10
14秒前
same发布了新的文献求助10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598