亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Tokens-Aware Transformer Network for Multi-Region and Multi-Sequence MR-to-CT Synthesis in a Single Model

计算机科学 人工智能 变压器 模式识别(心理学) 卷积神经网络 分类器(UML) 计算机视觉 电压 物理 量子力学
作者
Liming Zhong,Zeli Chen,Hai Shu,Kaiyi Zheng,Yin Li,Weicui Chen,Yuankui Wu,Jianhua Ma,Qianjin Feng,Wei Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (2): 794-806 被引量:20
标识
DOI:10.1109/tmi.2023.3321064
摘要

The superiority of magnetic resonance (MR)-only radiotherapy treatment planning (RTP) has been well demonstrated, benefiting from the synthesis of computed tomography (CT) images which supplements electron density and eliminates the errors of multi-modal images registration. An increasing number of methods has been proposed for MR-to-CT synthesis. However, synthesizing CT images of different anatomical regions from MR images with different sequences using a single model is challenging due to the large differences between these regions and the limitations of convolutional neural networks in capturing global context information. In this paper, we propose a multi-scale tokens-aware Transformer network (MTT-Net) for multi-region and multi-sequence MR-to-CT synthesis in a single model. Specifically, we develop a multi-scale image tokens Transformer to capture multi-scale global spatial information between different anatomical structures in different regions. Besides, to address the limited attention areas of tokens in Transformer, we introduce a multi-shape window self-attention into Transformer to enlarge the receptive fields for learning the multi-directional spatial representations. Moreover, we adopt a domain classifier in generator to introduce the domain knowledge for distinguishing the MR images of different regions and sequences. The proposed MTT-Net is evaluated on a multi-center dataset and an unseen region, and remarkable performance was achieved with MAE of 69.33 ± 10.39 HU, SSIM of 0.778 ± 0.028, and PSNR of 29.04 ± 1.32 dB in head & neck region, and MAE of 62.80 ± 7.65 HU, SSIM of 0.617 ± 0.058 and PSNR of 25.94 ± 1.02 dB in abdomen region. The proposed MTT-Net outperforms state-of-the-art methods in both accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chaoshen发布了新的文献求助10
8秒前
9秒前
jyy完成签到,获得积分10
16秒前
Jasper应助elliotzzz采纳,获得30
19秒前
20秒前
21秒前
21秒前
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
Luckydan发布了新的文献求助10
26秒前
1234发布了新的文献求助10
26秒前
Ava应助矮小的猕猴桃采纳,获得10
26秒前
110o发布了新的文献求助10
29秒前
Olivia完成签到,获得积分10
31秒前
执着的天使完成签到 ,获得积分10
34秒前
34秒前
110o完成签到,获得积分10
36秒前
orixero应助Olivia采纳,获得10
37秒前
40秒前
西瓜汁完成签到,获得积分10
45秒前
充电宝应助1234采纳,获得10
47秒前
47秒前
Simon完成签到,获得积分10
49秒前
Luckydan完成签到,获得积分10
52秒前
52秒前
浮游应助辛勤远望采纳,获得30
52秒前
高高雅青发布了新的文献求助10
52秒前
Xiaque发布了新的文献求助10
56秒前
1分钟前
1234完成签到,获得积分10
1分钟前
休斯顿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164