Multi-Scale Tokens-Aware Transformer Network for Multi-Region and Multi-Sequence MR-to-CT Synthesis in a Single Model

计算机科学 人工智能 变压器 模式识别(心理学) 卷积神经网络 分类器(UML) 计算机视觉 电压 物理 量子力学
作者
Liming Zhong,Zeli Chen,Hai Shu,Kaiyi Zheng,Yin Li,Weicui Chen,Yuankui Wu,Jianhua Ma,Qianjin Feng,Wei Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (2): 794-806 被引量:9
标识
DOI:10.1109/tmi.2023.3321064
摘要

The superiority of magnetic resonance (MR)-only radiotherapy treatment planning (RTP) has been well demonstrated, benefiting from the synthesis of computed tomography (CT) images which supplements electron density and eliminates the errors of multi-modal images registration. An increasing number of methods has been proposed for MR-to-CT synthesis. However, synthesizing CT images of different anatomical regions from MR images with different sequences using a single model is challenging due to the large differences between these regions and the limitations of convolutional neural networks in capturing global context information. In this paper, we propose a multi-scale tokens-aware Transformer network (MTT-Net) for multi-region and multi-sequence MR-to-CT synthesis in a single model. Specifically, we develop a multi-scale image tokens Transformer to capture multi-scale global spatial information between different anatomical structures in different regions. Besides, to address the limited attention areas of tokens in Transformer, we introduce a multi-shape window self-attention into Transformer to enlarge the receptive fields for learning the multi-directional spatial representations. Moreover, we adopt a domain classifier in generator to introduce the domain knowledge for distinguishing the MR images of different regions and sequences. The proposed MTT-Net is evaluated on a multi-center dataset and an unseen region, and remarkable performance was achieved with MAE of 69.33 ± 10.39 HU, SSIM of 0.778 ± 0.028, and PSNR of 29.04 ± 1.32 dB in head & neck region, and MAE of 62.80 ± 7.65 HU, SSIM of 0.617 ± 0.058 and PSNR of 25.94 ± 1.02 dB in abdomen region. The proposed MTT-Net outperforms state-of-the-art methods in both accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zlsf应助勺儿采纳,获得10
3秒前
略略略发布了新的文献求助10
6秒前
CodeCraft应助吴可之采纳,获得10
7秒前
petrichor完成签到 ,获得积分10
11秒前
无花果应助Belinda采纳,获得10
11秒前
萨芬撒发布了新的文献求助20
13秒前
pan完成签到 ,获得积分10
21秒前
23秒前
petrichor完成签到 ,获得积分10
24秒前
nice1025完成签到,获得积分10
25秒前
乐优发布了新的文献求助10
26秒前
29秒前
31秒前
少年完成签到,获得积分10
32秒前
大模型应助扒开皮皮采纳,获得10
32秒前
orixero应助66采纳,获得10
33秒前
科研通AI5应助内向绿竹采纳,获得10
34秒前
carl发布了新的文献求助10
35秒前
猪猪hero发布了新的文献求助10
37秒前
胡图图完成签到 ,获得积分10
38秒前
华仔应助Cherry采纳,获得10
38秒前
归尘应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
39秒前
归尘应助科研通管家采纳,获得10
39秒前
归尘应助科研通管家采纳,获得10
39秒前
归尘应助科研通管家采纳,获得10
39秒前
归尘应助科研通管家采纳,获得10
39秒前
JamesPei应助科研通管家采纳,获得10
39秒前
归尘应助科研通管家采纳,获得10
39秒前
乐乐应助wss123456采纳,获得10
39秒前
bc应助科研通管家采纳,获得10
39秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
脑洞疼应助萨芬撒采纳,获得10
39秒前
Hello应助科研通管家采纳,获得30
39秒前
39秒前
bc应助科研通管家采纳,获得20
39秒前
bc应助科研通管家采纳,获得30
39秒前
所所应助carl采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385