Quantitative evaluation of collector flotation performance II: The creation of a collector property index based on molecular structure

数量结构-活动关系 排名(信息检索) 合理设计 工作(物理) 计算机科学 生化工程 工艺工程 化学 人工智能 机器学习 工程类 机械工程 纳米技术 材料科学
作者
Wanjia Zhang,John Ralston,Renji Zheng,Wei Sun,Shihong Xu,Jian Cao,Xin Jin,Zhitao Feng,Zhiyong Gao
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:332: 125855-125855 被引量:7
标识
DOI:10.1016/j.seppur.2023.125855
摘要

The evaluation and prediction of flotation performance is a key step in the development of high-performance collectors for the efficient flotation separation of low-grade complex ores. In our previous work, we have created the flotation index (FI) for a comprehensive and standardized evaluation of collector flotation performance. However, as an experiment-based index, FI does not have the quantitative predictive power that is rudimental to the rational flotation reagent design. In this work, the collector properties were obtained by quantum chemistry (QC) calculation. By ranking the importance of the QC properties, machine learning (ML) aids the selection of key properties representing different aspects of a collector (polar, non-polar and overall polarity). The key properties were incorporated into a theory-based collector property index (CPI). Based on quantitative structure–activity relationship (QSAR), the bridge between theory and experiment were established by searching for the relationship CPI and FI, enabling convenient evaluation and prediction of collector flotation performance. The accuracy of our QSAR model was verified using the galena-pyrite separation system. Our QSAR model demonstrates transferability in that it can predict the collectors with diverse skeletons or types, pushing the limit that most conventional QSAR models only apply to the collectors with similar skeletons or types. This work provides an alternative pathway for the rational design and performance prediction of flotation surfactants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nowind发布了新的文献求助10
2秒前
3秒前
无边落木发布了新的文献求助30
4秒前
桐桐应助Jelly采纳,获得10
5秒前
Owen应助xiong采纳,获得30
5秒前
科研通AI6应助雨天慢行采纳,获得10
5秒前
紫杉罗罗完成签到,获得积分10
7秒前
麦大林完成签到,获得积分10
9秒前
Lilian完成签到,获得积分10
11秒前
11秒前
12秒前
Imstemcell发布了新的文献求助10
12秒前
15秒前
jify完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
浮游应助科研通管家采纳,获得30
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
小杭76应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
小杭76应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
小杭76应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
郑欣坤发布了新的文献求助10
19秒前
王晴发布了新的文献求助10
19秒前
必过六级发布了新的文献求助10
22秒前
酷酷的涵蕾完成签到 ,获得积分10
22秒前
pierniao发布了新的文献求助10
23秒前
Imstemcell完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050037
求助须知:如何正确求助?哪些是违规求助? 4277777
关于积分的说明 13334714
捐赠科研通 4092686
什么是DOI,文献DOI怎么找? 2239802
邀请新用户注册赠送积分活动 1246549
关于科研通互助平台的介绍 1175370