Physics-informed neural networks as surrogate models of hydrodynamic simulators

稳健性(进化) 大洪水 替代模型 人工神经网络 计算机科学 不确定度量化 机器学习 数据收集 人工智能 数据科学 数学 统计 基因 生物化学 哲学 化学 神学
作者
James Donnelly,Alireza Daneshkhah,Soroush Abolfathi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 168814-168814 被引量:125
标识
DOI:10.1016/j.scitotenv.2023.168814
摘要

In response to growing concerns surrounding the relationship between climate change and escalating flood risk, there is an increasing urgency to develop precise and rapid flood prediction models. Although high-resolution flood simulations have made notable advancements, they remain computationally expensive, underscoring the need for efficient machine learning surrogate models. As a result of sparse empirical observation and expensive data collection, there is a growing need for the models to perform effectively in 'small-data' contexts, a characteristic typical of many scientific problems. This research combines the latest developments in surrogate modelling and physics-informed machine learning to propose a novel Physics-Informed Neural Network-based surrogate model for hydrodynamic simulators governed by Shallow Water Equations. The proposed method incorporates physics-based prior information into the neural network structure by encoding the conservation of mass into the model without relying on calculating continuous derivatives in the loss function. The method is demonstrated for a high-resolution inland flood simulation model and a large-scale regional tidal model. The proposed method outperforms the existing state-of-the-art data-driven approaches by up to 25 %. This research demonstrates the benefits and robustness of physics-informed approaches in surrogate modelling for flood and hydroclimatic modelling problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lululu发布了新的文献求助10
2秒前
3秒前
深情安青应助科研通管家采纳,获得30
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
默默发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
深情安青应助科研通管家采纳,获得30
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792