BOA

分割 脂肪组织 计算机科学 皮下脂肪组织 DICOM 医学 胸腔 放射科 人工智能 解剖 内科学
作者
Johannes Haubold,Giulia Baldini,Vicky Parmar,Benedikt M. Schaarschmidt,Sven Koitka,Lennard Kroll,Natalie van Landeghem,Lale Umutlu,Michael Forsting,Felix Nensa,René Hosch
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:59 (6): 433-441 被引量:17
标识
DOI:10.1097/rli.0000000000001040
摘要

Purpose The study aimed to develop the open-source body and organ analysis (BOA), a comprehensive computed tomography (CT) image segmentation algorithm with a focus on workflow integration. Methods The BOA combines 2 segmentation algorithms: body composition analysis (BCA) and TotalSegmentator. The BCA was trained with the nnU-Net framework using a dataset including 300 CT examinations. The CTs were manually annotated with 11 semantic body regions: subcutaneous tissue, muscle, bone, abdominal cavity, thoracic cavity, glands, mediastinum, pericardium, breast implant, brain, and spinal cord. The models were trained using 5-fold cross-validation, and at inference time, an ensemble was used. Afterward, the segmentation efficiency was evaluated on a separate test set comprising 60 CT scans. In a postprocessing step, a tissue segmentation (muscle, subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue, epicardial adipose tissue, and paracardial adipose tissue) is created by subclassifying the body regions. The BOA combines this algorithm and the open-source segmentation software TotalSegmentator to have an all-in-one comprehensive selection of segmentations. In addition, it integrates into clinical workflows as a DICOM node–triggered service using the open-source Orthanc research PACS (Picture Archiving and Communication System) server to make the automated segmentation algorithms available to clinicians. The BCA model's performance was evaluated using the Sørensen-Dice score. Finally, the segmentations from the 3 different tools (BCA, TotalSegmentator, and BOA) were compared by assessing the overall percentage of the segmented human body on a separate cohort of 150 whole-body CT scans. Results The results showed that the BCA outperformed the previous publication, achieving a higher Sørensen-Dice score for the previously existing classes, including subcutaneous tissue (0.971 vs 0.962), muscle (0.959 vs 0.933), abdominal cavity (0.983 vs 0.973), thoracic cavity (0.982 vs 0.965), bone (0.961 vs 0.942), and an overall good segmentation efficiency for newly introduced classes: brain (0.985), breast implant (0.943), glands (0.766), mediastinum (0.880), pericardium (0.964), and spinal cord (0.896). All in all, it achieved a 0.935 average Sørensen-Dice score, which is comparable to the one of the TotalSegmentator (0.94). The TotalSegmentator had a mean voxel body coverage of 31% ± 6%, whereas BCA had a coverage of 75% ± 6% and BOA achieved 93% ± 2%. Conclusions The open-source BOA merges different segmentation algorithms with a focus on workflow integration through DICOM node integration, offering a comprehensive body segmentation in CT images with a high coverage of the body volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着绿草发布了新的文献求助10
1秒前
1秒前
星竹月影发布了新的文献求助10
3秒前
百二完成签到 ,获得积分10
3秒前
小白应助要减肥的夜天采纳,获得10
4秒前
5秒前
个性书翠发布了新的文献求助10
7秒前
8秒前
msd2phd完成签到,获得积分10
9秒前
唐博凡完成签到,获得积分10
9秒前
qy发布了新的文献求助10
10秒前
CodeCraft应助珊明治采纳,获得10
13秒前
13秒前
16秒前
39完成签到,获得积分10
18秒前
哈喽发布了新的文献求助10
19秒前
zhinian完成签到 ,获得积分10
21秒前
敖江风云发布了新的文献求助30
21秒前
酷酷河马发布了新的文献求助10
23秒前
23秒前
刘明生发布了新的文献求助10
25秒前
26秒前
mr发布了新的文献求助10
28秒前
30秒前
大模型应助Afliea采纳,获得10
33秒前
35秒前
小乖完成签到,获得积分10
35秒前
哈喽完成签到,获得积分10
36秒前
小太阳发布了新的文献求助50
36秒前
36秒前
乐乐应助花开富贵采纳,获得10
37秒前
qianqian完成签到,获得积分10
38秒前
汉堡包应助开心的幻柏采纳,获得10
38秒前
40秒前
40秒前
qianqian发布了新的文献求助10
40秒前
领导范儿应助djbj2022采纳,获得10
47秒前
47秒前
48秒前
开心的幻柏完成签到,获得积分10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844728
求助须知:如何正确求助?哪些是违规求助? 3387160
关于积分的说明 10547720
捐赠科研通 3107736
什么是DOI,文献DOI怎么找? 1712081
邀请新用户注册赠送积分活动 824250
科研通“疑难数据库(出版商)”最低求助积分说明 774655