亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM

支持向量机 方位(导航) 断层(地质) 人工智能 模式识别(心理学) 试验装置 工程类 人工神经网络 特征向量 反向传播 算法 计算机科学 量子力学 物理 地质学 地震学
作者
Jian Zhou,Maohua Xiao,Yue Niu,Guojun Ji
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (16): 6281-6281 被引量:25
标识
DOI:10.3390/s22166281
摘要

A rolling bearing fault diagnosis method based on whale gray wolf optimization algorithm-variational mode decomposition-support vector machine (WGWOA-VMD-SVM) was proposed to solve the unclear fault characterization of rolling bearing vibration signal due to its nonlinear and nonstationary characteristics. A whale gray wolf optimization algorithm (WGWOA) was proposed by combining whale optimization algorithm (WOA) and gray wolf optimization (GWO), and the rolling bearing signal was decomposed by using variational mode decomposition (VMD). Each eigenvalue was extracted as eigenvector after VMD, and the training and test sets of the fault diagnosis model were divided accordingly. The support vector machine (SVM) was used as the fault diagnosis model and optimized by using WGWOA. The validity of this method was verified by two cases of Case Western Reserve University bearing data set and laboratory test. The test results show that in the bearing data set of Case Western Reserve University, compared with the existing VMD-SVM method, the fault diagnosis accuracy rate of the WGWOA-VMD-SVM method in five repeated tests reaches 100.00%, which preliminarily verifies the feasibility of this algorithm. In the laboratory test case, the diagnostic effect of the proposed fault diagnosis method is compared with backpropagation neural network, SVM, VMD-SVM, WOA-VMD-SVM, GWO-VMD-SVM, and WGWOA-VMD-SVM. Test results show that the accuracy rate of WGWOA-VMD-SVM fault diagnosis is the highest, the accuracy rate of a single test reaches 100.00%, and the accuracy rate of five repeated tests reaches 99.75%, which is the highest compared with the above six methods. WGWOA plays a good optimization role in optimizing VMD and SVM. The signal decomposed by VMD is optimized by using the WGWOA algorithm without mode overlap. WGWOA has the better convergence performance than WOA and GWO, which further verifies its superiority among the compared methods. The research results can provide an effective improvement method for the existing rolling bearing fault diagnosis technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bryceeluo完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
27秒前
41秒前
41秒前
zsyf完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
矢思然完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
陆驳发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助陆驳采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
沉静的安青完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
啦啦啦完成签到 ,获得积分20
4分钟前
斯文败类应助2953685951采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
2953685951发布了新的文献求助10
5分钟前
5分钟前
hjp发布了新的文献求助10
5分钟前
今后应助hjp采纳,获得10
5分钟前
冒险寻羊完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
罗琦琦完成签到,获得积分20
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881577
求助须知:如何正确求助?哪些是违规求助? 3423981
关于积分的说明 10736749
捐赠科研通 3148821
什么是DOI,文献DOI怎么找? 1737632
邀请新用户注册赠送积分活动 838855
科研通“疑难数据库(出版商)”最低求助积分说明 784111