Cotton Seedling Detection and Counting Based on UAV Multispectral Images and Deep Learning Methods

苗木 多光谱图像 播种 遥感 数学 人工智能 环境科学 计算机科学 农学 生物 地理
作者
Yingxiang Feng,Wei Chen,Yiru Ma,Ze Zhang,Pan Gao,Xin Lv
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (10): 2680-2680 被引量:12
标识
DOI:10.3390/rs15102680
摘要

Cotton is one of the most important cash crops in Xinjiang, and timely seedling inspection and replenishment at the seedling stage are essential for cotton’s late production management and yield formation. The background conditions of the cotton seedling stage are complex and variable, and deep learning methods are widely used to extract target objects from the complex background. Therefore, this study takes seedling cotton as the research object and uses three deep learning algorithms, YOLOv5, YOLOv7, and CenterNet, for cotton seedling detection and counting using images at six different times of the cotton seedling period based on multispectral images collected by UAVs to develop a model applicable to the whole cotton seedling period. The results showed that when tested with data collected at different times, YOLOv7 performed better overall in detection and counting, and the T4 dataset performed better in each test set. Precision, Recall, and F1-Score values with the best test results were 96.9%, 96.6%, and 96.7%, respectively, and the R2, RMSE, and RRMSE indexes were 0.94, 3.83, and 2.72%, respectively. In conclusion, the UAV multispectral images acquired about 23 days after cotton sowing (T4) with the YOLOv7 algorithm achieved rapid and accurate seedling detection and counting throughout the cotton seedling stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxt完成签到,获得积分10
1秒前
liyuqi61148完成签到,获得积分10
1秒前
李思超发布了新的文献求助240
5秒前
陶醉的海冬完成签到 ,获得积分10
8秒前
8秒前
小蘑菇应助yy采纳,获得10
9秒前
11秒前
13秒前
15秒前
跳跃若风完成签到,获得积分10
15秒前
where发布了新的文献求助10
17秒前
醒醒发布了新的文献求助10
19秒前
20秒前
CodeCraft应助ye采纳,获得10
20秒前
21秒前
tl完成签到,获得积分10
24秒前
爆米花应助最爱吃火锅采纳,获得30
25秒前
27秒前
QR发布了新的文献求助10
28秒前
青柠关注了科研通微信公众号
30秒前
研友_xLOMQZ完成签到,获得积分0
30秒前
ye发布了新的文献求助10
33秒前
昏睡的蟠桃应助李思超采纳,获得240
34秒前
DPH完成签到 ,获得积分10
35秒前
英俊的铭应助醒醒采纳,获得10
35秒前
45秒前
car子完成签到 ,获得积分10
47秒前
王佳豪发布了新的文献求助10
48秒前
科研通AI5应助科研通管家采纳,获得10
48秒前
情怀应助科研通管家采纳,获得30
48秒前
科研通AI5应助科研通管家采纳,获得30
48秒前
慕青应助科研通管家采纳,获得10
48秒前
NexusExplorer应助科研通管家采纳,获得10
49秒前
HLQF完成签到,获得积分10
49秒前
传奇3应助科研通管家采纳,获得10
49秒前
研友_VZG7GZ应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得20
49秒前
Lucas应助科研通管家采纳,获得10
49秒前
小马甲应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339