Win-Win by Competition: Auxiliary-Free Cloth-Changing Person Re-Identification

计算机科学 判别式 人工智能 鉴定(生物学) 特征工程 推论 机器学习 特征(语言学) 深度学习 语言学 哲学 植物 生物
作者
Zhengwei Yang,Xian Zhong,Zhun Zhong,Hong Liu,Zheng Wang,Shin’ichi Satoh
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2985-2999 被引量:23
标识
DOI:10.1109/tip.2023.3277389
摘要

Recent person Re-IDentification (ReID) systems have been challenged by changes in personnel clothing, leading to the study of Cloth-Changing person ReID (CC-ReID). Commonly used techniques involve incorporating auxiliary information ( e.g ., body masks, gait, skeleton, and keypoints) to accurately identify the target pedestrian. However, the effectiveness of these methods heavily relies on the quality of auxiliary information and comes at the cost of additional computational resources, ultimately increasing system complexity. This paper focuses on achieving CC-ReID by effectively leveraging the information concealed within the image. To this end, we introduce an Auxiliary-free Competitive IDentification (ACID) model. It achieves a win-win situation by enriching the identity (ID)-preserving information conveyed by the appearance and structure features while maintaining holistic efficiency. In detail, we build a hierarchical competitive strategy that progressively accumulates meticulous ID cues with discriminating feature extraction at the global, channel, and pixel levels during model inference. After mining the hierarchical discriminative clues for appearance and structure features, these enhanced ID-relevant features are crosswise integrated to reconstruct images for reducing intra-class variations. Finally, by combing with self- and cross-ID penalties, the ACID is trained under a generative adversarial learning framework to effectively minimize the distribution discrepancy between the generated data and real-world data. Experimental results on four public cloth-changing datasets ( i.e ., PRCC-ReID, VC-Cloth, LTCC-ReID, and Celeb-ReID) demonstrate the proposed ACID can achieve superior performance over state-of-the-art methods. The code is available soon at: https://github.com/BoomShakaY/Win-CCReID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhou完成签到,获得积分10
2秒前
任性凤凰完成签到,获得积分20
3秒前
倪倪完成签到,获得积分10
5秒前
qs发布了新的文献求助10
5秒前
我是老大应助首席或雪月采纳,获得10
6秒前
Atom完成签到,获得积分10
7秒前
彬子完成签到,获得积分10
7秒前
在水一方应助changnan采纳,获得10
8秒前
10秒前
adam完成签到,获得积分10
10秒前
mc发布了新的文献求助10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
qiao应助科研通管家采纳,获得10
11秒前
11秒前
Lucas应助任性凤凰采纳,获得10
12秒前
大咖发布了新的文献求助10
14秒前
潘辉完成签到,获得积分10
15秒前
科研通AI5应助三幅画采纳,获得10
16秒前
科研通AI5应助三幅画采纳,获得10
16秒前
匀速前行发布了新的文献求助10
16秒前
夏小安完成签到,获得积分10
17秒前
17秒前
马哥二弟无敌完成签到 ,获得积分10
19秒前
20秒前
21秒前
liu关闭了liu文献求助
22秒前
23秒前
qs完成签到,获得积分20
23秒前
李爱国应助poki采纳,获得10
24秒前
隐形曼青应助匀速前行采纳,获得10
25秒前
changnan发布了新的文献求助10
25秒前
北海qy完成签到,获得积分10
25秒前
yarkye完成签到,获得积分10
25秒前
mc关闭了mc文献求助
26秒前
歇儿哒哒完成签到,获得积分10
26秒前
wlnhyF发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979