数学
非线性系统
理论(学习稳定性)
操作员(生物学)
拉普拉斯算子
p-拉普拉斯算子
数学分析
时滞微分方程
不动点定理
类型(生物学)
微分方程
应用数学
分数阶微积分
生物
基因
转录因子
机器学习
物理
量子力学
抑制因子
生物化学
计算机科学
边值问题
化学
生态学
作者
Lingling Zhang,Emmanuel Addai
摘要
In this paper, we study a system of multiple positive solutions and stability results for nonlinear fractional delay differential equations involving p $$ p $$ -Laplacian operator. We derived adequate conditions to ensure that at least three nonnegative solutions exist by applying the conditions of the Leggett–Williams fixed-point theory and some Green function properties. Due to a small change in time-delay, we analyzed the Hyers–Ulam stability-type of the equation. We used Riemann–Liouville fractional differential definition, and we assumed that nonzero delay ϑ > 0 $$ \vartheta >0 $$ . In addition, for application purpose, comprehensive examples are given to ensure the effectiveness and feasibility of the results in this paper. Our proposed equation generalize some literature in the system.
科研通智能强力驱动
Strongly Powered by AbleSci AI