Seismic Stability Assessment of Single-Layer Reticulated Dome Structures by the Development of Deep Learning Action Recognition Network

穹顶(地质) 理论(学习稳定性) 图层(电子) 地质学 动作(物理) 结构工程 人工智能 地震学 计算机科学 工程类 材料科学 机器学习 复合材料 物理 古生物学 量子力学
作者
Tianhong Zheng,Wei Long,Bo Shen,Yongjun Zhang,Yujie Lu,Kejian Ma
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455425502141
摘要

Structural seismic stability is an important content of research in the field of structural engineering safety. Current methods of seismic stability assessment of single-layer reticulated dome structures, supporting engineering decisions regarding the strengthening, repair, or demolition of structures, are complex and do not facilitate engineering applications, so the deep learning action recognition networks to analyze the structural deformation are employed and assessment of the seismic stability. In order to tackle the problem of an insufficient receptive field of structural global change during the dynamic response process within networks, a Dual-Branch Attention Module (DBAM) is innovatively proposed, which enables the effective perception of the global deformation of reticulated dome structures. The DBAM consists of the Maxpooling Channel Attentional (MCA) branch and the Large Kernel Pyramid Attentional (LKPA) branch, which can provide the network with multi-scale global perceptual information, thus enhancing the recognition ability of the model. In addition, the ReticDomeSeismic dataset is created by the mapping relations from the displacement intervals to RGB colors proposed, which contains a large amount of video data on the seismic analysis of single-layer reticulated dome structures under different parameters. The dataset was employed to verify the proposed DBAM method, and the experimental results show that the DBAM improves the Mean Accuracy of base action recognition methods by 4.37% on average, the highest Top-1 Accuracy of 93.48%. Therefore, the method proposed for structural deformation recognition can quickly and accurately assess the seismic stability of single-layer reticulated dome structures, and also provides significant insights and guidance for engineering practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助7890733采纳,获得10
刚刚
高贵路灯完成签到,获得积分10
刚刚
2秒前
温柔觅云完成签到,获得积分20
3秒前
碧蓝之柔发布了新的文献求助10
3秒前
小蘑菇应助小皮采纳,获得10
4秒前
烟花应助番茄鸡蛋牛肉fan采纳,获得30
5秒前
6秒前
6秒前
6秒前
7秒前
chengxiong发布了新的文献求助10
7秒前
潜龙完成签到,获得积分10
7秒前
lzh完成签到 ,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得30
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
juncguo完成签到,获得积分20
9秒前
科研小白应助科研通管家采纳,获得20
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助姜萌萌采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
充电宝应助杨松采纳,获得10
11秒前
12秒前
科研通AI6应助善良的采蓝采纳,获得10
12秒前
13秒前
123发布了新的文献求助10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701