Lingdan: enhancing encoding of traditional Chinese medicine knowledge for clinical reasoning tasks with large language models

药方 计算机科学 基线(sea) 人工智能 中医药 自然语言处理 医学 替代医学 海洋学 病理 药理学 地质学
作者
Rui Hua,Dong Xin,Yu Wei,Zixin Shu,Pengcheng Yang,Yunhui Hu,Shuiping Zhou,He Sun,Kaijing Yan,Xijun Yan,Kai Chang,Xiaodong Li,Yuning Bai,Runshun Zhang,Wenjia Wang,Xuezhong Zhou
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 2019-2029 被引量:9
标识
DOI:10.1093/jamia/ocae087
摘要

Abstract Objective The recent surge in large language models (LLMs) across various fields has yet to be fully realized in traditional Chinese medicine (TCM). This study aims to bridge this gap by developing a large language model tailored to TCM knowledge, enhancing its performance and accuracy in clinical reasoning tasks such as diagnosis, treatment, and prescription recommendations. Materials and Methods This study harnessed a wide array of TCM data resources, including TCM ancient books, textbooks, and clinical data, to create 3 key datasets: the TCM Pre-trained Dataset, the Traditional Chinese Patent Medicine (TCPM) Question Answering Dataset, and the Spleen and Stomach Herbal Prescription Recommendation Dataset. These datasets underpinned the development of the Lingdan Pre-trained LLM and 2 specialized models: the Lingdan-TCPM-Chat Model, which uses a Chain-of-Thought process for symptom analysis and TCPM recommendation, and a Lingdan Prescription Recommendation model (Lingdan-PR) that proposes herbal prescriptions based on electronic medical records. Results The Lingdan-TCPM-Chat and the Lingdan-PR Model, fine-tuned on the Lingdan Pre-trained LLM, demonstrated state-of-the art performances for the tasks of TCM clinical knowledge answering and herbal prescription recommendation. Notably, Lingdan-PR outperformed all state-of-the-art baseline models, achieving an improvement of 18.39% in the Top@20 F1-score compared with the best baseline. Conclusion This study marks a pivotal step in merging advanced LLMs with TCM, showcasing the potential of artificial intelligence to help improve clinical decision-making of medical diagnostics and treatment strategies. The success of the Lingdan Pre-trained LLM and its derivative models, Lingdan-TCPM-Chat and Lingdan-PR, not only revolutionizes TCM practices but also opens new avenues for the application of artificial intelligence in other specialized medical fields. Our project is available at https://github.com/TCMAI-BJTU/LingdanLLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chem34发布了新的文献求助10
4秒前
乐乐应助一起采纳,获得10
4秒前
pjxxx完成签到 ,获得积分10
5秒前
imlarry发布了新的文献求助10
6秒前
So完成签到 ,获得积分10
11秒前
89757发布了新的文献求助10
11秒前
fffffffffffffff完成签到 ,获得积分10
15秒前
imlarry完成签到,获得积分10
16秒前
18秒前
rrrrroxie发布了新的文献求助10
24秒前
anny.white完成签到,获得积分10
27秒前
乐乐应助小鼠鼠的小狐狸采纳,获得30
27秒前
28秒前
搜集达人应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
情怀应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
动漫大师发布了新的文献求助10
34秒前
fishhh发布了新的文献求助10
34秒前
35秒前
36秒前
细心书蕾完成签到 ,获得积分10
37秒前
泡泡鱼完成签到 ,获得积分10
39秒前
44秒前
望北完成签到 ,获得积分10
44秒前
gleep1发布了新的文献求助10
48秒前
pluto应助完美梨愁采纳,获得20
49秒前
言午完成签到,获得积分10
49秒前
50秒前
89757完成签到,获得积分10
52秒前
myuniv发布了新的文献求助10
54秒前
yuqinghui98发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385