Patch ModernTCN-Mixer: a dual-task temporal convolutional network framework for hybrid implementation of first prediction time detection and remaining useful life prognosis

对偶(语法数字) 计算机科学 任务(项目管理) 实时计算 人工智能 模式识别(心理学) 工程类 艺术 文学类 系统工程
作者
Dechen Yao,Bo Tang,Jianwei Yang,Wenbo Yue,Qiang Li,Shudong Guo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116011-116011 被引量:2
标识
DOI:10.1088/1361-6501/ad6892
摘要

Abstract Over the past few years, notable advancements have been achieved in predicting the remaining useful life (RUL) of rotating equipment through deep learning methodologies. However, existing RUL prediction models tend to implement the determination of the first prediction time (FPT) for stage division separately from the RUL prediction, ignoring their potential correlation in the degradation process. In response to this issue, this paper proposed a dual-task prediction network framework based on Patch ModernTCN-Mixer (PMTCN-Mixer), which adaptively and jointly achieved FPT detection and RUL prediction. Firstly, the network designed a hard sharing parameter feature extractor module, Patch ModernTCN, which is used to learn the temporal dependence and spatial correlation of degradation features. Secondly, to eliminate redundant information and noise during the feature extraction phase while enhancing the precision of detection and prognosis, a dynamic semi-soft thresholding (DST) module was constructed. Lastly, the dual-task learning network PMTCN-Mixer was constructed by combining Patch ModernTCN with DST, utilizing GradNorm to balance the gradients between FPT detection and RUL prediction tasks to achieve fusion prediction. The performance of the PMTCN-Mixer framework was validated on the XJTU-SY Bearing Datasets and IEEE PHM 2012 Challenge Datasets, compared with the state-of-the-art network’s optimal results, the RUL prediction metrics root mean square error, mean absolute error, Score and R 2 were improved by 17.31%, 23.59%, 10.66%, and 4.76%, respectively. The findings confirm that the dual-task prediction model PMTCN-Mixer effectively captures both spatial and temporal semantic information from deterioration data, precisely accomplishes the integration of FPT detection and RUL prediction, and possess good generalization ability and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助HOME采纳,获得10
1秒前
伊斯塔战灵完成签到,获得积分10
2秒前
wanci应助melenda采纳,获得10
3秒前
4秒前
4秒前
6秒前
洪七公发布了新的文献求助10
7秒前
CYY完成签到,获得积分10
7秒前
和谐的傥发布了新的文献求助10
8秒前
11秒前
12秒前
Panda尧完成签到,获得积分10
14秒前
melenda发布了新的文献求助10
16秒前
LSW发布了新的文献求助10
18秒前
sun完成签到,获得积分10
20秒前
和谐的傥完成签到,获得积分20
20秒前
共享精神应助harry2021采纳,获得10
21秒前
ding应助小李采纳,获得10
23秒前
科研通AI5应助CY采纳,获得10
25秒前
呜呜哇哇66666完成签到,获得积分10
28秒前
29秒前
开拖拉机的医学僧完成签到 ,获得积分10
29秒前
30秒前
星星完成签到,获得积分10
34秒前
小李发布了新的文献求助10
34秒前
36秒前
SMG完成签到 ,获得积分10
36秒前
自由绿凝完成签到,获得积分10
38秒前
38秒前
Jason发布了新的文献求助10
39秒前
奈落完成签到 ,获得积分10
43秒前
李发行发布了新的文献求助10
45秒前
激昂的亦竹完成签到 ,获得积分10
47秒前
47秒前
橘涂完成签到 ,获得积分10
48秒前
49秒前
阔达曲奇完成签到,获得积分20
49秒前
口袋的天空完成签到,获得积分10
50秒前
李发行完成签到,获得积分10
51秒前
你好我叫方先生完成签到 ,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323538
关于积分的说明 10214834
捐赠科研通 3038709
什么是DOI,文献DOI怎么找? 1667628
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315