Detection of Piston Ring Deficiency in The Assembly of Automotive Ball Joint and Tie Rod End Parts

汽车工业 计算机科学 盈利能力指数 航空航天 生产线 图像处理 竞争优势 人工智能 灰度 制造工程 计算机视觉 工程类 机械工程 图像(数学) 航空航天工程 业务 财务 营销 经济
作者
Mehmet Emin Örs,Ziya Özçelik
出处
期刊:Düzce Üniversitesi bilim ve teknoloji dergisi [Düzce University]
标识
DOI:10.29130/dubited.1465948
摘要

In today's intensely competitive environment, businesses strive to optimize production efficiency to reduce costs, increase profitability, and ensure customer satisfaction. This focus on efficiency and quality enables businesses to operate more effectively, gain a competitive advantage in the market, and move towards sustainable growth. This study uses image processing techniques to detect missing segments in the assembly of ball joints automatically. In the automotive industry, performing quality control of critical components before assembly and detecting and classifying the defective ones is essential. Many quality control methods can be applied with existing technologies. This paper proposes an automatic real-time control based on image processing techniques to detect ball joint missing segments, a common defect in the automotive industry. In the company, operators perform defect detection by visual inspection. In this system, production continues in cases where the operator cannot detect the defect. This system aims to detect the errors made by the operator during the assembly operations and provide instant feedback. The developed system uses OpenCV library algorithms that are highly accurate in detecting defects in manual assembly processes so that missing components are removed from the production chain, and production quality is significantly improved. Accuracy is over 94% when identifying missing segments, about 30% better than traditional methods. In tests, 1200 ball joints were run through the system, resulting in 1150 defects being correctly identified and removed from the production line. Accuracy is high thanks to the application of various image processing techniques such as grayscale conversion, edge detection, and shape recognition. This also provides real-time feedback to the operator so the system can reduce detection and response time from 15 seconds to 5 seconds. This increases production speed and reduces the error rate in manual assembly processes by 20%. This paper also highlights the potential of image processing technology in manufacturing. It will contribute to improved quality control mechanisms to increase the reliability and efficiency of production lines in the automotive industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助峡星牙采纳,获得10
1秒前
FireRain发布了新的文献求助10
3秒前
3秒前
4秒前
稀饭发布了新的文献求助10
6秒前
bkagyin应助Summertrain采纳,获得30
7秒前
帅气的祥发布了新的文献求助10
10秒前
11秒前
诗蕊发布了新的文献求助10
12秒前
hugeyoung发布了新的文献求助10
16秒前
xxx关注了科研通微信公众号
17秒前
神勇的豁发布了新的文献求助20
19秒前
帅气的祥完成签到,获得积分10
21秒前
没心没肺发布了新的文献求助10
21秒前
petrichor完成签到,获得积分10
22秒前
会撒娇的若剑完成签到,获得积分10
25秒前
共享精神应助阿QQQQ采纳,获得10
32秒前
33秒前
34秒前
34秒前
雨水发布了新的文献求助10
35秒前
36秒前
羊踯躅完成签到,获得积分10
38秒前
38秒前
李一诺发布了新的文献求助10
38秒前
搜集达人应助CYY采纳,获得10
39秒前
kekejiang发布了新的文献求助10
40秒前
40秒前
41秒前
六只鱼发布了新的文献求助10
42秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
Ava应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
46秒前
三瓣橘子应助科研通管家采纳,获得10
46秒前
顾矜应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
小马甲应助科研通管家采纳,获得10
47秒前
大个应助科研通管家采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385