Temporal dynamic alterations of regional homogeneity in major depressive disorder: a study integrating machine learning

同质性(统计学) 楔前 接收机工作特性 中央后回 功能磁共振成像 心理学 重性抑郁障碍 静息状态功能磁共振成像 神经科学 医学 内科学 计算机科学 机器学习 扁桃形结构
作者
Xiaofeng Wu,Xiaojun Shen,Qinghe Li,Peiyuan Wang
出处
期刊:Neuroreport [Lippincott Williams & Wilkins]
卷期号:35 (15): 972-979 被引量:1
标识
DOI:10.1097/wnr.0000000000002086
摘要

Previous studies have found alterations in the local regional homogeneity of brain activity in individuals diagnosed with major depressive disorder. However, many studies have failed to consider that even during resting states, brain activity is dynamic and time-varying. The lack of investigation into the dynamic regional homogeneity has hindered the discovery of biomarkers for depression. This study aimed to assess the utility of the dynamic regional homogeneity by a machine learning model (support vector machine). Sixty-five individuals with dynamic regional homogeneity and 57 healthy controls participated in resting-state functional magnetic resonance rescanning and scale estimating. The dynamic regional homogeneity and receiver operating characteristic curve methods were used for analysis of the imaging data. Relative to healthy controls, major depressive disorder patients displayed increased dynamic regional homogeneity values in the left precuneus and right postcentral gyrus. Additionally, receiver operating characteristic curve results of the dynamic regional homogeneity values in the left precuneus and right postcentral gyrus could distinguish major depressive disorder patients from healthy controls; furthermore, changes in the dynamic regional homogeneity were correlated with depression severity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Fandash采纳,获得10
1秒前
1秒前
平淡冬亦完成签到 ,获得积分10
1秒前
Bb发布了新的文献求助10
2秒前
3秒前
isyfear发布了新的文献求助10
4秒前
胡憨憨发布了新的文献求助10
5秒前
滴滴发布了新的文献求助10
5秒前
6秒前
10秒前
挖掘机完成签到,获得积分10
11秒前
张祥辉完成签到,获得积分10
12秒前
13秒前
Ander完成签到 ,获得积分10
14秒前
繁星完成签到,获得积分10
14秒前
16秒前
高文强发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
缓慢耳机完成签到,获得积分20
18秒前
打打应助要减肥的晓曼采纳,获得10
19秒前
杨贵严发布了新的文献求助10
19秒前
20秒前
20秒前
赴约发布了新的文献求助10
21秒前
小杭76应助lyman采纳,获得10
22秒前
22秒前
王祥坤发布了新的文献求助10
22秒前
23秒前
aurora应助匪石采纳,获得10
24秒前
独自人生完成签到,获得积分10
25秒前
缓慢耳机关注了科研通微信公众号
25秒前
25秒前
LX发布了新的文献求助10
26秒前
温暖的百褶裙完成签到,获得积分10
26秒前
26秒前
领导范儿应助赴约采纳,获得10
27秒前
淡然的越彬完成签到,获得积分10
27秒前
CipherSage应助如意幻枫采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113