神经科学
谷氨酸的
少突胶质细胞
诱导多能干细胞
生物
髓鞘
突变
谷氨酸受体
自闭症谱系障碍
白质
神经认知
自闭症
突触后电位
细胞生物学
遗传学
基因
心理学
医学
中枢神经系统
认知
磁共振成像
胚胎干细胞
发展心理学
受体
放射科
作者
Inbar Fischer,Sophie Shohat,Yael Leichtmann‐Bardoogo,Ritu Nayak,G. Wiener,Idan Rosh,Aviram Shemen,Utkarsh Tripathi,May Rokach,Ela Bar,Yara Hussein,Ana Carolina Castro,Gal Chen,Adi Soffer,Sari Schokoroy-Trangle,Galit Elad‐Sfadia,Yaniv Assaf,Avi Schroeder,Patrícia Monteiro,Shani Stern
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2024-10-11
卷期号:10 (41)
标识
DOI:10.1126/sciadv.adl4573
摘要
Autism spectrum disorder (ASD) is characterized by social and neurocognitive impairments, with mutations of the SHANK3 gene being prominent in patients with monogenic ASD. Using the InsG3680 mouse model with a Shank3 mutation seen in humans, we revealed an unknown role for Shank3 in postsynaptic oligodendrocyte (OL) features, similar to its role in neurons. This was shown by impaired molecular and physiological glutamatergic traits of InsG3680-derived primary OL cultures. In vivo, InsG3680 mice exhibit significant reductions in the expression of key myelination–related transcripts and proteins, along with deficits in myelin ultrastructure, white matter, axonal conductivity, and motor skills. Last, we observed significant impairments, with clinical relevance, in induced pluripotent stem cell–derived OLs from a patient with the InsG3680 mutation. Together, our study provides insight into Shank3’s role in OLs and reveals a mechanism of the crucial connection of myelination to ASD pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI