A Multimodal Consistency-Based Self-Supervised Contrastive Learning Framework for Automated Sleep Staging in Patients With Disorders of Consciousness

计算机科学 一致性(知识库) 人工智能 模式治疗法 自然语言处理 机器学习 心理学 心理治疗师
作者
Jiahui Pan,Yangzuyi Yu,Man Li,Wu Wei,Shuyu Chen,Heyi Zheng,Yanbin He,Yuanqing Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (2): 1320-1332 被引量:3
标识
DOI:10.1109/jbhi.2024.3487657
摘要

Sleep is a fundamental human activity, and automated sleep staging holds considerable investigational potential. Despite numerous deep learning methods proposed for sleep staging that exhibit notable performance, several challenges remain unresolved, including inadequate representation and generalization capabilities, limitations in multimodal feature extraction, the scarcity of labeled data, and the restricted practical application for patients with disorder of consciousness (DOC). This paper proposes MultiConsSleepNet, a multimodal consistency-based sleep staging network. This network comprises a unimodal feature extractor and a multimodal consistency feature extractor, aiming to explore universal representations of electroencephalograms (EEGs) and electrooculograms (EOGs) and extract the consistency of intra- and intermodal features. Additionally, self-supervised contrastive learning strategies are designed for unimodal and multimodal consistency learning to address the current situation in clinical practice where it is difficult to obtain high-quality labeled data but has a huge amount of unlabeled data. It can effectively alleviate the model's dependence on labeled data, and improve the model's generalizability for effective migration to DOC patients. Experimental results on three publicly available datasets demonstrate that MultiConsSleepNet achieves state-of-the-art performance in sleep staging with limited labeled data and effectively utilizes unlabeled data, enhancing its practical applicability. Furthermore, the proposed model yields promising results on a self-collected DOC dataset, offering a novel perspective for sleep staging research in patients with DOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助axl采纳,获得10
2秒前
搞怪斑马发布了新的文献求助10
3秒前
3秒前
Orange应助宏hong采纳,获得10
3秒前
英吉利25发布了新的文献求助10
3秒前
4秒前
kyokyoro发布了新的文献求助10
4秒前
6秒前
7秒前
紧张的小松鼠完成签到,获得积分10
8秒前
FashionBoy应助张泸尹采纳,获得10
10秒前
嗷嗷嗷发布了新的文献求助10
10秒前
ho应助zzz采纳,获得20
11秒前
11秒前
12秒前
鲜艳的巧曼完成签到 ,获得积分10
12秒前
搜集达人应助LL采纳,获得10
13秒前
13秒前
快乐花卷完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
李健应助CO2采纳,获得10
15秒前
16秒前
16秒前
柏林寒冬应助淡然柚子采纳,获得10
17秒前
感性的夜玉完成签到,获得积分10
17秒前
宏hong发布了新的文献求助10
18秒前
孑然完成签到 ,获得积分10
18秒前
CodeCraft应助魁梧的寻菡采纳,获得10
19秒前
KevinSun完成签到,获得积分10
19秒前
19秒前
19秒前
可爱的函函应助甜甜亦巧采纳,获得10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396974
求助须知:如何正确求助?哪些是违规求助? 4517357
关于积分的说明 14063228
捐赠科研通 4429168
什么是DOI,文献DOI怎么找? 2432238
邀请新用户注册赠送积分活动 1424728
关于科研通互助平台的介绍 1403757