Integrated Machine Learning and Region Growing Algorithms for Enhanced Concrete Crack Detection: A Novel Approach

计算机科学 算法 人工智能 机器学习
作者
W. M. Yao,Hui Li,Yanlin Li
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (21): 9745-9745 被引量:1
标识
DOI:10.3390/app14219745
摘要

In the field of construction engineering, the cracking of concrete structures is a common engineering problem, which has a great impact on the overall stability and service life of the engineered structure. During structural repair, crack detection is the most critical step. Automatic detection significantly reduces the engineering cost and human factor error compared with manual detection. However, due to the changeable environment of the project site and different image specifications, using a single algorithm makes it difficult to balance high efficiency and high accuracy. In this study, we designed a combined recognition method including the region growth algorithm and machine learning regression that can achieve a tradeoff between accuracy and efficiency. Firstly, the regression method learns the image features of the dataset and the specific region growth threshold, and the regression function is trained by using the open-source dataset to determine the region growth threshold using the characteristics of the images included in the tests. The region growth algorithm is used to expand the threshold from the seed points of the image to obtain the crack recognition results. The results show that this method improves the accuracy of SSIM by 7% compared with the traditional region growth algorithm, and does not significantly increase the computational cost, with an increase of 0.78 s per photo process. Compared with the deep learning method, the recognition accuracy of SSIM is decreased by 5.96%, but it takes less resources and has high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
1秒前
情怀应助璎琅玉微凉采纳,获得10
2秒前
Owen应助如瑶采纳,获得10
2秒前
风趣夜山发布了新的文献求助10
2秒前
2秒前
种地小能手~完成签到 ,获得积分10
4秒前
十七完成签到,获得积分10
4秒前
一期一会发布了新的文献求助10
4秒前
deletelzr完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
田様应助机智元霜采纳,获得10
8秒前
国色不染尘完成签到,获得积分10
8秒前
gmy完成签到,获得积分10
9秒前
9秒前
9秒前
田様应助zhang-leo采纳,获得10
10秒前
852应助AKAYI采纳,获得30
10秒前
英俊的铭应助小鱼采纳,获得10
11秒前
追逐完成签到 ,获得积分10
12秒前
慕青应助李联洪采纳,获得10
12秒前
科研老兵完成签到,获得积分10
13秒前
如瑶发布了新的文献求助10
13秒前
14秒前
momo发布了新的文献求助10
15秒前
15秒前
庆庆发布了新的文献求助10
15秒前
lsc应助JeanetteJin采纳,获得10
15秒前
习习完成签到 ,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
小青椒应助科研通管家采纳,获得50
16秒前
puuuunido完成签到 ,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812