Particle Size-Tunable Polydopamine Nanoparticles for Optical and Electrochemical Imaging of Latent Fingerprints on Various Surfaces

材料科学 纳米颗粒 粒子(生态学) 纳米技术 粒径 电化学 扫描电化学显微镜 化学工程 电极 物理化学 海洋学 化学 工程类 地质学
作者
Lu Liu,Hui Zhou,Hongyu Chen,Zhiming Wang,Rongliang Ma,Xin Du,Meiqin Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (28): 37265-37274 被引量:4
标识
DOI:10.1021/acsami.4c06658
摘要

Powder dusting method is the most widely used approach due to its low cost, simplicity, minimal instrument dependence, and extensive applicability for developing latent fingerprints (LFPs). Herein, a novel optical and electrochemical dual-mode method for high-resolution LFP enhancement has been explored based on size-tunable polydopamine (PDA) nanoparticles (NPs) and scanning electrochemical microscopy (SECM). Dark PDAs rich in functional groups and negative charges can combine with the residues of LFPs on various surfaces with high sensitivity and selectivity to realize high-resolution visual fingerprint physical patterns on various porous and nonporous substrates with light color. However, optical visualization is not feasible for LFPs on dark or multicolored surfaces. Fortunately, based on the differences in electrochemical reactivity between ridges and furrows caused by the conductivity and reducibility of PDA powders, SECM can serve as a powerful supplement to optical methods to effectively overcome background color interference and distinctly display fingerprint patterns. Intriguingly, it is noteworthy that the binding amount and particle size of PDA powder significantly affected the optical and electrochemical visualization of LFPs: more powder binding amounts provided darker ridges in optical, and more surface reaction sites (larger powder binding mass at the same particle size or smaller particle size at the same mass) provided higher currents of ridges in electrochemical imaging. It demonstrates that the PDA powder as a dual-mode developer for LFPs offers a promising method for individual identification in forensics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
十三应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
火山暴涨球技完成签到,获得积分10
1秒前
hyjcs完成签到,获得积分0
1秒前
南建丽完成签到,获得积分10
1秒前
Owen应助shouyu29采纳,获得10
2秒前
liujinjin完成签到,获得积分10
2秒前
天天快乐应助YF采纳,获得10
3秒前
LLL完成签到,获得积分10
3秒前
4秒前
chaotianjiao完成签到 ,获得积分10
4秒前
Hina完成签到,获得积分0
4秒前
XIEMIN完成签到,获得积分10
4秒前
sincyking完成签到,获得积分10
5秒前
qmk完成签到,获得积分10
5秒前
友好冥王星完成签到 ,获得积分10
6秒前
6秒前
John不想上班完成签到 ,获得积分10
6秒前
一只菠萝包完成签到,获得积分10
7秒前
tingyi完成签到,获得积分10
7秒前
善良断缘完成签到 ,获得积分10
7秒前
小灰灰完成签到 ,获得积分10
8秒前
初见完成签到,获得积分20
8秒前
小魏哥完成签到,获得积分10
10秒前
10秒前
11秒前
yaolei完成签到,获得积分10
11秒前
123完成签到,获得积分10
12秒前
妙bu可yan完成签到,获得积分10
12秒前
林七完成签到 ,获得积分10
12秒前
YXHTCM完成签到,获得积分10
13秒前
吉吉完成签到,获得积分10
14秒前
15秒前
Meyako完成签到 ,获得积分10
15秒前
喜悦跳跳糖完成签到 ,获得积分10
16秒前
16秒前
京城第一社恐完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615