Photoinduced synthesis of polymer-coated covalent organic framework microspheres for highly efficient lithium recovery

材料科学 吸附 共价键 共价有机骨架 锂(药物) 解吸 聚合物 选择性 化学工程 多孔性 有机化学 催化作用 复合材料 内分泌学 工程类 化学 医学
作者
Yifan Zhu,Qing Ai,Qiyi Fang,Xiaochuan Huang,Yifeng Liu,Bongki Shin,Yunrui Yan,Yuren Feng,Michelle T. Chen,Xiang Zhang,Yimo Han,Qilin Li,Pulickel M. Ajayan,Jun Lou
出处
期刊:Nano Energy [Elsevier BV]
卷期号:130: 110111-110111
标识
DOI:10.1016/j.nanoen.2024.110111
摘要

The increasing demand for lithium-ion batteries has led to a surge in global lithium consumption, calling for efficient extraction and recovery methods. Adsorption-based lithium recovery has gained attention for its simplicity, selectivity, and low energy requirements. However, conventional adsorption materials for lithium-ion (Li+) suffer from low surface area and covered active sites, resulting in slow recovery and inefficient uptake. Herein, we present a facile photoinduced synthesis of crown ether (CE)-based polymer grafted covalent organic framework (COF) microspheres, termed COF-CE, as an efficient lithium adsorbent. The COF-CE hybrid material possesses abundant nanochannels and highly porous surfaces, enabling rapid ion diffusion and enhancing ion accessibility to functional groups with the exclusive selectivity imparted by the grafted CE polymer towards Li+ over other monovalent cations. Notably, COF-CE exhibits exceptional absorption capacity (7.4 mg/g), rapid adsorption rates (k2 = 0.137 g mg−1 min−1) and high selectivity towards Li+, outperforming existing adsorbents. Moreover, COF-CE demonstrates remarkable Li+ regeneration and recycling capabilities, achieving near-unity recovery of lithium during the desorption phase and retaining 97 % of its adsorption capacity after five cycles. These results highlight the potential of COF-CE as an advanced adsorbent for lithium recovery in various applications, including industrial wastewater treatment and environmental remediation efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkking发布了新的文献求助10
2秒前
冯二完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
NexusExplorer应助Ryan采纳,获得10
7秒前
wanci应助淡然的落雁采纳,获得10
8秒前
9秒前
10秒前
ZHI发布了新的文献求助10
10秒前
Hello应助大力的含卉采纳,获得10
12秒前
zxd发布了新的文献求助10
13秒前
LL发布了新的文献求助10
13秒前
16秒前
向日葵完成签到,获得积分10
17秒前
文静紫霜完成签到 ,获得积分10
21秒前
Lorenz发布了新的文献求助10
23秒前
LEE完成签到,获得积分10
23秒前
老迟到的友菱完成签到,获得积分10
24秒前
科研通AI5应助lkkkkkk采纳,获得30
25秒前
27秒前
29秒前
31秒前
32秒前
王萍完成签到 ,获得积分10
33秒前
lkkkkkk完成签到,获得积分20
35秒前
liuzhigang完成签到 ,获得积分10
35秒前
abcdefg发布了新的文献求助10
36秒前
Ryan发布了新的文献求助10
37秒前
燕尔蓝完成签到,获得积分10
37秒前
xingzai101完成签到,获得积分10
37秒前
华仔应助烤肉酱酱酱采纳,获得10
38秒前
38秒前
坚定初柳完成签到 ,获得积分10
38秒前
39秒前
甘文崔发布了新的文献求助10
40秒前
ZHI完成签到,获得积分10
40秒前
bkagyin应助凤梨配汉堡采纳,获得10
41秒前
可莉不想出去玩完成签到,获得积分20
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366