Cassava disease detection using a lightweight modified soft attention network

计算机科学 特征(语言学) 鉴定(生物学) 分类 植物病害 人工智能 模式识别(心理学) 数据挖掘 机器学习 生物技术 生物 语言学 植物 哲学
作者
Arailym Dosset,L. Minh Dang,Faisal Alharbi,Shabana Habib,Nur Alam,Han Yong Park,Hyeonjoon Moon
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.8456
摘要

Abstract BACKGROUND Cassava is a high‐carbohydrate crop that is at risk of viral infections. The production rate and quality of cassava crops are affected by several diseases. However, the manual identification of diseases is challenging and requires considerable time because of the lack of field professionals and the limited availability of clear and distinct information. Consequently, the agricultural management system is seeking an efficient and lightweight method that can be deployable to edged devices for detecting diseases at an early stage. To address these issues and accurately categorize different diseases, a very effective and lightweight framework called CDDNet has been introduced. We used MobileNetV3Small framework as a backbone feature for extracting optimized, discriminating, and distinct features. These features are empirically validated at the early intermediate stage. Additionally, we modified the soft attention module to effectively prioritize the diseased regions and enhance significant cassava plant disease‐related features for efficient cassava disease detection. RESULTS Our proposed method achieved accuracies of 98.95%, 97.03%, and 98.25% on Cassava Image Dataset, Cassava Plant Disease Merged (2019–2020) Dataset, and the newly created Cassava Plant Composite Dataset, respectively. Furthermore, the proposed technique outperforms previous state‐of‐the‐art methods in terms of accuracy, parameter count, and frames per second values, ultimately making the proposed CDDNet the best one for real‐time processing. CONCLUSION Our findings underscore the importance of a lightweight and efficient technique for cassava disease detection and classification in a real‐time environment. Furthermore, we highlight the impact of modified soft attention on model performance. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
JW2071367发布了新的文献求助10
1秒前
灵巧尔云完成签到,获得积分10
1秒前
2秒前
zwl完成签到,获得积分20
3秒前
banfen发布了新的文献求助10
4秒前
Woodward完成签到,获得积分10
4秒前
5秒前
共享精神应助冷静的小之采纳,获得10
5秒前
6秒前
like雯完成签到,获得积分10
7秒前
8秒前
葵花籽完成签到,获得积分10
9秒前
沐兮发布了新的文献求助10
10秒前
彭于晏应助光亮翠风采纳,获得10
10秒前
娜子发布了新的文献求助10
10秒前
niuniu完成签到,获得积分10
11秒前
ray完成签到,获得积分10
12秒前
12秒前
来福萨克斯完成签到 ,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
JW2071367完成签到,获得积分10
16秒前
Ava应助QVQ采纳,获得10
16秒前
鱿鱼完成签到,获得积分10
16秒前
17秒前
延胡索发布了新的文献求助10
18秒前
大个应助月下荷花采纳,获得10
19秒前
开心的瘦子完成签到,获得积分10
20秒前
20秒前
黄婷完成签到,获得积分20
20秒前
21秒前
wanci应助yexu845采纳,获得10
21秒前
丰富咖啡完成签到 ,获得积分10
22秒前
23秒前
阿文发布了新的文献求助20
23秒前
Lxx发布了新的文献求助10
24秒前
kk发布了新的文献求助10
26秒前
李健应助哈哈哈哈采纳,获得10
26秒前
newnew完成签到,获得积分10
27秒前
March发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215