S patial CTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology

反褶积 水准点(测量) 转录组 计算生物学 仿形(计算机编程) 数据挖掘 生物 计算机科学 地理 基因 地图学 基因表达 算法 操作系统 生物化学
作者
Jiayuan Ding,Lingxiao Li,Qiaolin Lu,Julian Venegas,Yixin Wang,Lidan Wu,Wei Jin,Hongzhi Wen,Renming Liu,Wenzhuo Tang,Xinnan Dai,Zhaoheng Li,Wangyang Zuo,Yi Chang,Yu L. Lei,Lulu Shang,Patrick Danaher,Yuying Xie,Jiliang Tang
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:31 (9): 871-885 被引量:7
标识
DOI:10.1089/cmb.2024.0532
摘要

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at a multicellular resolution that is more cost-effective. The task of cell type deconvolution has been introduced to disentangle discrete cell types from such multicellular spots. However, existing benchmark datasets for cell type deconvolution are either generated from simulation or limited in scale, predominantly encompassing data on mice and are not designed for human immuno-oncology. To overcome these limitations and promote comprehensive investigation of cell type deconvolution for human immuno-oncology, we introduce a large-scale spatial transcriptomic deconvolution benchmark dataset named SpatialCTD, encompassing 1.8 million cells and 12,900 pseudo spots from the human tumor microenvironment across the lung, kidney, and liver. In addition, SpatialCTD provides more realistic reference than those generated from single-cell RNA sequencing (scRNA-seq) data for most reference-based deconvolution methods. To utilize the location-aware SpatialCTD reference, we propose a graph neural network-based deconvolution method (i.e., GNNDeconvolver). Extensive experiments show that GNNDeconvolver often outperforms existing state-of-the-art methods by a substantial margin, without requiring scRNA-seq data. To enable comprehensive evaluations of spatial transcriptomics data from flexible protocols, we provide an online tool capable of converting spatial transcriptomic data from various platforms (e.g., 10× Visium, MERFISH, and sci-Space) into pseudo spots, featuring adjustable spot size. The SpatialCTD dataset and GNNDeconvolver implementation are available at https://github.com/OmicsML/SpatialCTD, and the online converter tool can be accessed at https://omicsml.github.io/SpatialCTD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
3秒前
3秒前
CipherSage应助达达爱大雪采纳,获得10
3秒前
4秒前
lameliu发布了新的文献求助10
4秒前
慕青应助Unicorn采纳,获得10
4秒前
雨萱应助ff采纳,获得10
5秒前
万能图书馆应助ff采纳,获得10
5秒前
香蕉觅云应助ff采纳,获得10
5秒前
JamesPei应助ff采纳,获得10
5秒前
852应助ff采纳,获得10
5秒前
ding应助ff采纳,获得10
5秒前
悠悠应助温暖伟祺采纳,获得10
5秒前
yang发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
111完成签到,获得积分10
9秒前
10秒前
Unicorn完成签到,获得积分10
12秒前
ChatGPT发布了新的文献求助10
12秒前
13秒前
14秒前
陈陈完成签到,获得积分10
14秒前
15秒前
15秒前
orixero应助小鱼勇敢游采纳,获得10
15秒前
李爱国应助小鱼勇敢游采纳,获得10
15秒前
旺仔发布了新的文献求助10
16秒前
华仔应助chai采纳,获得10
16秒前
赘婿应助FleeToMars采纳,获得10
16秒前
小资发布了新的文献求助10
16秒前
1823发布了新的文献求助10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
yznfly应助科研通管家采纳,获得50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609