ASSBert: Active and semi-supervised bert for smart contract vulnerability detection

机器学习 人工智能 标记数据 脆弱性(计算) 通知 编码(集合论) 主动学习(机器学习) 深度学习 半监督学习 计算机科学 水准点(测量) 计算机安全 集合(抽象数据类型) 程序设计语言 法学 地理 政治学 大地测量学
作者
Xiaobing Sun,Liangqiong Tu,Jiale Zhang,Jie Cai,Bin Li,Yu Wang
出处
期刊:Journal of information security and applications [Elsevier BV]
卷期号:73: 103423-103423 被引量:18
标识
DOI:10.1016/j.jisa.2023.103423
摘要

With the popularity of blockchain, the amount of smart contracts has increased very fast, and the safety of smart contracts has come to more extensive notice. Recently, machine learning technology has been widely applied in vulnerability detection for smart contracts. However, it implements effective smart contract vulnerability detection still faces a major challenge, that is, there is a problem of insufficient labeled data in the current field. Active learning can label data more efficiently. Nevertheless, classical active learning only uses limited labeled data for model training, contrary to the deep learning of a large amount of data required for model training. Because of the above, we provide a new framework, called ASSBert, that leverages active and semi-supervised bidirectional encoder representation from transformers network, which is dedicated to completing the task of smart contract vulnerability classification with a little amount of labeled code data and a large number of unlabeled code data. In our framework, active learning is responsible for selecting highly uncertain code data from unlabeled sol files and putting them into the training set after manual labeling. Besides, semi-supervised learning is charged to continuously pick a certain number of high-confidence unlabeled code data from unlabeled sol files, and put them into the training dataset behind pseudo-labeling. Intuitively, by combining active learning and semi-supervised learning, we are able to get more valuable data to increase the performance of our detection model. In our experiments, we collect our benchmark dataset included 6 vulnerabilities in about 20829 smart contracts. The result of the experiment demonstrates that our framework is superior to the baseline methods with a little amount of labeled code data and a large number of unlabeled code data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
9秒前
12秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
乐观画板发布了新的文献求助10
14秒前
奥雷里亚诺完成签到 ,获得积分10
15秒前
18秒前
小小文完成签到,获得积分10
19秒前
闵天佑发布了新的文献求助30
22秒前
23秒前
粗糙的德福完成签到,获得积分10
23秒前
科研通AI2S应助蛇虫鼠蚁采纳,获得10
25秒前
酷酷的涵蕾完成签到 ,获得积分10
29秒前
杳鸢完成签到,获得积分0
30秒前
Malmever发布了新的文献求助30
30秒前
高山流水完成签到,获得积分10
35秒前
一二完成签到 ,获得积分10
37秒前
船长完成签到,获得积分10
39秒前
午见千山应助船长采纳,获得30
42秒前
大个应助阳光明明采纳,获得10
45秒前
大方谷梦完成签到 ,获得积分10
47秒前
47秒前
英姑应助槲寄生采纳,获得10
48秒前
50秒前
是真的发布了新的文献求助10
54秒前
zouzou完成签到,获得积分10
57秒前
57秒前
大模型应助维多利亚少年采纳,获得10
57秒前
empty完成签到,获得积分10
59秒前
NikiJu完成签到,获得积分10
1分钟前
1分钟前
cherhon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
纯真的诗兰完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751