无损检测
热成像
信号处理
数据处理
方案(数学)
计算机科学
复合材料层合板
信号(编程语言)
固体力学
复合数
激光器
实验数据
材料科学
人工智能
光学
数字信号处理
算法
计算机硬件
复合材料
数学
数学分析
放射科
物理
红外线的
操作系统
程序设计语言
统计
医学
作者
Jakub Roemer,Hassan Abbas Khawaja,Mojtaba Moatamedi,Łukasz Pieczonka
标识
DOI:10.1007/s10921-023-00932-2
摘要
Abstract This paper proposes a data processing scheme for laser spot thermography (LST) applied for nondestructive testing (NDT) of composite laminates. The LST involves recording multiple thermographic sequences, resulting in large amounts of data that have to be processed cumulatively to evaluate the diagnostic information. This paper demonstrates a new data processing scheme based on parameterization and machine learning. The approach allows to overcome some of the major difficulties in LST signal processing and deliver valuable diagnostic information. The effectiveness of the proposed approach is demonstrated on an experimental dataset acquired for a laminated composite sample with multiple simulated delaminations. The paper discusses the theoretical aspects of the proposed signal processing and inference algorithms as well as the experimental arrangements necessary to collect the input data.
科研通智能强力驱动
Strongly Powered by AbleSci AI