分割
基于分割的对象分类
尺度空间分割
图像分割
切割
计算机科学
基于最小生成树的图像分割
人工智能
计算机视觉
像素
边界(拓扑)
区域增长
格式塔心理学
图形
对象(语法)
范围分割
背景(考古学)
模式识别(心理学)
数学
理论计算机科学
地理
生物
数学分析
神经科学
感知
考古
作者
Yuri Boykov,Marie‐Pierre Jolly
标识
DOI:10.1109/iccv.2001.937505
摘要
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both "object" and "background" segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI