Pharmacophore and QSAR Modeling of Neuronal Nitric Oxide Synthase Ligands and Subsequent Validation and In Silico Search for New Scaffolds

药效团 数量结构-活动关系 生物信息学 厕所 化学 计算生物学 配体(生物化学) 虚拟筛选 立体化学 组合化学 生物化学 生物 受体 基因
作者
Ghadeer A. R. Y. Suaifan,Mayadah B. Shehadeh,Hebah Al-Ijel,Khuloud T. Al‐Jamal,Mutasem O. Taha
出处
期刊:Medicinal Chemistry [Bentham Science Publishers]
卷期号:12 (4): 371-393 被引量:2
标识
DOI:10.2174/1573406411666151002130609
摘要

Neuronal Nitric Oxide synthase (nNOS) is an attractive challenging target for the treatment of various neurodegenerative disorders. To date, several structure-based studies were conducted to search novel selective nNOS inhibitors.Discovery of novel nNOS lead scaffolds through the integration of ligand-based threedimensional (3D) pharmacophore (s) with quantitative structure-activity relationship model.The pharmacophoric space of ten structurally diverse sets acquired from 145 previously reported nNOS inhibitors was scrutinize to fabricate representative pharmacophores. Afterwards, genetic algorithm together with multiple linear regression analysis was applied to find out an optimal pharmacophoric models and 2D physicochemical descriptors able to produce optimal predictive QSAR equation (r(2) 116 =0.76, F = 353, r(2) LOO = 0.69, r(2) PRESS against 29 external test ligands =0.51). A minimum of three binding modes between ligands and nNOS binding pocket rationalized by the emergence of three pharmacophoric models in the QSAR equation were illustrated. The QSAR-selected pharmacophores were validated by receiver operating characteristic curves analysis and afterward invested as a tool for screening national cancer institute (NCI) database.Low micro molar novel nNOS inhibitors were revealed.Two structurally diverse compounds 148 and 153 demonstrated new scaffolds toward the discovery of potent nNOS inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lei_Wang9913完成签到,获得积分10
3秒前
as112358完成签到 ,获得积分10
3秒前
6秒前
ultramantaro完成签到,获得积分10
6秒前
科研通AI5应助flyinglin采纳,获得10
6秒前
6秒前
xxuan完成签到,获得积分10
7秒前
浮萍完成签到,获得积分10
10秒前
xiaozhang发布了新的文献求助10
11秒前
zz完成签到,获得积分10
12秒前
13秒前
18秒前
虚幻雁荷发布了新的文献求助10
19秒前
简珹楚发布了新的文献求助10
22秒前
背后的傥完成签到,获得积分10
24秒前
shuo0976完成签到 ,获得积分10
26秒前
zxy关闭了zxy文献求助
26秒前
今后应助坦率的寻双采纳,获得10
27秒前
lanshi1008发布了新的文献求助20
28秒前
叶mt完成签到 ,获得积分10
29秒前
白奕完成签到,获得积分10
30秒前
30秒前
白奕发布了新的文献求助10
33秒前
我来学习学习完成签到,获得积分10
34秒前
叶mt发布了新的文献求助10
34秒前
35秒前
38秒前
土木科研小灵通完成签到 ,获得积分10
40秒前
科研通AI5应助dmeng采纳,获得10
42秒前
陶醉的烤鸡完成签到 ,获得积分10
42秒前
maden57777发布了新的文献求助10
42秒前
43秒前
烟花应助简珹楚采纳,获得10
44秒前
47秒前
52秒前
张先生发布了新的文献求助10
53秒前
星辰大海应助王佳豪采纳,获得10
54秒前
文献看不懂应助czb666采纳,获得10
54秒前
shine完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778155
求助须知:如何正确求助?哪些是违规求助? 3323817
关于积分的说明 10215889
捐赠科研通 3038977
什么是DOI,文献DOI怎么找? 1667739
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339