风化作用
生物地球化学循环
地球科学
剥蚀
生物地球化学
环境科学
气候变化
碳循环
生态系统
土壤生产函数
地球生物学
全球变化
地质记录
营养循环
地质学
土壤科学
生态学
土壤水分
成土作用
地貌学
地球化学
海洋学
生物
火山作用
古生物学
工程地质
构造学
作者
Susan L. Brantley,J. Patrick Megonigal,F. N. Scatena,Zsuzsanna Balogh‐Brunstad,Rebecca T. Barnes,Mary Ann Bruns,Philippe Van Cappellen,Katerina Dontsova,Hilairy E. Hartnett,Anthony S. Hartshorn,Arjun M. Heimsath,Elizabeth Herndon,Lixin Jin,Catherine Keller,Jonathan R. Leake,William H. McDowell,Frederick C. Meinzer,Thomas J. Mozdzer,S. Petsch,J. Pett-Ridge
出处
期刊:Geobiology
[Wiley]
日期:2011-01-14
卷期号:9 (2): 140-165
被引量:188
标识
DOI:10.1111/j.1472-4669.2010.00264.x
摘要
Abstract Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth’s surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar‐to‐chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant‐microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term.(4) In eroding landscapes, weathering‐front advance at depth is coupled to surface denudation via biotic processes.(5) Biology shapes the topography of the Critical Zone.(6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws.(7) Rising global temperatures will increase carbon losses from the Critical Zone.(8) Rising atmospheric P CO2 will increase rates and extents of mineral weathering in soils.(9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering.(10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales.(12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.
科研通智能强力驱动
Strongly Powered by AbleSci AI