亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Clinical Integration of Deep Learning–Based Classification of Urinary Sediment Particles from Digital Microscopy Images: A Prospective Study

可解释性 人工智能 计算机科学 稳健性(进化) 试验装置 尿沉渣 数据集 校准 集合(抽象数据类型) 自动化方法 数据收集 模式识别(心理学) 数据挖掘 机器学习 训练集 深度学习 可视化 接口(物质) 显微镜 图像处理 试验数据 显微镜 班级(哲学) 数字图像 计算机视觉 沉积物 监督学习 交叉验证 准确度和精密度 预处理器
作者
Stylianos G. Mouslech,Sven Wijnants,Anne-Lisanne van der Schagt,Lieve Van Hoovels,Roxane Deley,Matthijs Oyaert,Jana Neirinck,J. Billen,Glynis Frans,Maarten De Vos
出处
期刊:Clinical Chemistry [Oxford University Press]
标识
DOI:10.1093/clinchem/hvaf182
摘要

Abstract Background Urinalysis is a standard clinical test that includes the microscopic examination of urinary sediment to identify formed elements. Manual evaluation by laboratory technicians is time-intensive and subject to human error. Automated analysis using digital microscopy images presents a potential alternative. This study evaluates the integration of a deep learning approach to automatically classify urinary sediment images in the clinical laboratory, including independent prospective validation of its performance. Methods An annotated data set comprising 13 classes of urinary sediment elements was created from a database of Sysmex UD-10 digital microscope images. An EfficientNet-based model was trained and tested across three experimental scenarios to evaluate the effects of data collection strategies on performance. Uncertainty calibration was examined. The model’s robustness and interpretability were examined using gradient-weighted class activation mapping (Grad-CAM) to visualize influential image regions and t-distributed stochastic neighbor embedding (t-SNE) to analyze learned feature embeddings. Lastly, a graphical user interface was developed for a prospective evaluation in the laboratory. Results The model achieved approximately 97% overall accuracy on the test set. Experiments revealed sensitivity to data set variability, suggesting that performance may improve by integrating additional training examples. Confidence scores aligned with accuracy, and interpretability analyses showed that the model focused on relevant image regions and learned embeddings demonstrated clear class separation. In the prospective evaluation, top 1 and top 3 accuracies decreased to approximately 78% and 92%, respectively. Conclusions Our results indicate that a lightweight deep learning model can achieve high performance in classifying urine particles. Analysis of discrepancies between retrospective and prospective evaluations provides important insights toward reliable clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuan_完成签到 ,获得积分20
14秒前
GIA完成签到,获得积分10
20秒前
orangel完成签到,获得积分10
24秒前
Criminology34应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
andrele应助科研通管家采纳,获得10
30秒前
矢思然完成签到,获得积分10
1分钟前
yesiyan完成签到,获得积分10
1分钟前
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
cijing完成签到,获得积分10
2分钟前
2分钟前
2分钟前
醋灯笼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
杰老爷完成签到,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
orixero应助那那采纳,获得10
2分钟前
shiny完成签到 ,获得积分10
2分钟前
HOAN应助辛勤夜柳采纳,获得30
2分钟前
2分钟前
3分钟前
3分钟前
辛勤夜柳完成签到,获得积分10
3分钟前
杰老爷发布了新的文献求助10
3分钟前
117发布了新的文献求助10
3分钟前
xky200125完成签到 ,获得积分10
3分钟前
我是老大应助wq采纳,获得10
3分钟前
3分钟前
cling发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205