非参数统计
离群值
收益率曲线
财政部
计算机科学
参数统计
计量经济学
产量(工程)
功能(生物学)
机器学习
人工智能
选择(遗传算法)
一致性(知识库)
灵活性(工程)
学习曲线
数据点
数学优化
参数方程
非参数回归
选型
曲线拟合
数据挖掘
稳健统计
算法
数学
参数化模型
推论
作者
Damir Filipović,Markus Pelger,Ye Ye
出处
期刊:Management Science
[Institute for Operations Research and the Management Sciences]
日期:2025-12-22
标识
DOI:10.1287/mnsc.2023.01401
摘要
We introduce a robust, flexible, and easy-to-implement method for estimating the yield curve from treasury securities. Our nonparametric method learns the discount curve in a function space that we motivate by economic principles. We show in an extensive empirical study on U.S. Treasury securities that our method strongly dominates all parametric and nonparametric benchmarks. It achieves substantially smaller out-of-sample yield and pricing errors while being robust to outliers and data selection choices. We attribute the superior performance to the optimal trade-off between flexibility and smoothness, which positions our method as the new standard for yield curve estimation. This paper was accepted by Agostino Capponi, finance. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2023.01401 .
科研通智能强力驱动
Strongly Powered by AbleSci AI