化学
发光
磷光
单重态
三重态
光化学
人口
联苯
大气温度范围
荧光
激发态
分子
原子物理学
有机化学
量子力学
物理
社会学
光电子学
人口学
气象学
作者
Rafał Czerwieniec,Jiangbo Yu,Hartmut Yersin
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2011-08-03
卷期号:50 (17): 8293-8301
被引量:451
摘要
Strongly luminescent neutral copper(I) complexes of the type Cu(pop)(NN), with pop = bis(2-(diphenylphosphanyl)phenyl)ether and NN = bis(pyrazol-1-yl)borohydrate (pz(2)BH(2)), tetrakis(pyrazol-1-yl)borate (pz(4)B), or bis(pyrazol-1-yl)-biphenyl-borate (pz(2)Bph(2)), are readily accessible in reactions of Cu(acetonitrile)(4)(+) with equimolar amounts of the pop and NN ligands at ambient temperature. All products were characterized by means of single crystal X-ray diffractometry. The compounds exhibit very strong blue/white luminescence with emission quantum yields of up to 90%. Investigations of spectroscopic properties and the emission decay behavior in the temperature range between 1.6 K and ambient temperature allow us to assign the emitting electronic states. Below 100 K, the emission decay times are in the order of many hundreds of microseconds. Therefore, it is concluded that the emission stems from the lowest triplet state. This state is assigned to a metal-to-ligand charge-transfer state (3MLCT) involving Cu-3dand pop-π* orbitals. With temperature increase, the emission decay time is drastically reduced, e.g. to 13 μs [corrected] (Cu(pop)-(pz(2)Bph(2))), at ambient temperature. At this temperature, the complexes exhibit high emission quantum yields, as neat material or doped into poly(methyl methacrylate) (PMMA). This behavior is assigned to an efficient thermal population of a singlet state (being classified as (1)MLCT), which lies only 800 to 1300 cm(-1) above the triplet state, depending on the individual complex. Thus, the resulting emission at ambient temperature largely represents a fluorescence. For applications in OLEDs and LEECs, for example, this type of thermally activated delayed fluorescence (TADF) creates a new mechanism that allows to harvest both singlet and triplet excitons (excitations) in the lowest singlet state. This effect of singlet harvesting leads to drastically higher radiative rates than obtainable for emissions from triplet states of Cu(I) complexes.
科研通智能强力驱动
Strongly Powered by AbleSci AI