A blood-based three-gene signature for the non-invasive detection of early human hepatocellular carcinoma

肝细胞癌 基因签名 肿瘤科 医学 基因表达谱 内科学 外周血单个核细胞 微阵列 基因 基因表达 生物 遗传学 体外
作者
Ming Shi,Min-Shan Chen,Karthik Sekar,Chee‐Kiat Tan,London Lucien Ooi,Kam M. Hui
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:50 (5): 928-936 被引量:80
标识
DOI:10.1016/j.ejca.2013.11.026
摘要

Identifying early stages of disease in high-risk individuals for the development of hepatocellular carcinoma (HCC) would greatly improve the clinical outcomes of these individuals. The aim of this study was to develop a blood-based gene set that could identify early-stage HCC.Comprehensive gene expression profiling of purified RNA of peripheral blood mononuclear cells (PBMC) was performed using microarrays. Gene signatures were developed through bioinformatics-driven approaches and their diagnostic value was evaluated by custom-designed, quantitative, multiplex polymerase chain reaction (PCR) assays.Bioinformatics-driven analysis of microarray data derived from PBMC RNA samples of patients with HCC (N=10), pancreatic cancer (N=3), gastric cancer (N=3) and 10 normal individuals identified six genes that were differentially expressed in HCC. Subsequent multiplex-PCR validation and univariate analyses performed with an independent cohort of 114 HCC patients, 48 normal individuals and 14 patients with chronic hepatitis B (CHB) validated that three genes, namely Chemokine (C-X-C motif) receptor 2 (CXCR2), C-C chemokine receptor type 2 (CCR2) and E1A-Binding Protein P400 (EP400), were able to identify HCC individually with accuracies of 82.4%, 78.4% and 65%, respectively. In combination, these three genes gave an area under the curve (AUC) of 0.96 (95% confidence interval (CI), 0.93-0.99) using multivariate logistic regression and yielded a sensitivity of 93% and a specificity of 89%. When these three genes were used in combination with alpha-fetoprotein (AFP) to predict HCC, the accuracy of predicting HCC improved slightly with an AUC of 0.99 (95% CI, 0.98-1.0), sensitivity of 93% and specificity of 95%.CXCR2, CCR2 and EP400 can provide a promising non-invasive multiplex PCR diagnostic assay to monitor high-risk individuals for the development of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZX0501发布了新的文献求助10
1秒前
吴可新发布了新的文献求助10
1秒前
潇洒皮带完成签到,获得积分10
1秒前
科研通AI5应助现代的烤鸡采纳,获得10
2秒前
2秒前
2秒前
科研通AI5应助wjy321采纳,获得10
2秒前
3秒前
怡然雁凡完成签到,获得积分10
5秒前
987654完成签到,获得积分10
5秒前
开朗的钻石完成签到,获得积分10
6秒前
6秒前
义气梦山发布了新的文献求助10
7秒前
7秒前
zho发布了新的文献求助10
7秒前
充电宝应助叶成帷采纳,获得10
7秒前
卡卡西应助ddfgrsdgfdg采纳,获得20
7秒前
科研通AI5应助puluxiuka采纳,获得10
8秒前
阿斯顿撒大学完成签到,获得积分20
9秒前
大个应助1282941496采纳,获得10
9秒前
清嚣发布了新的文献求助10
11秒前
李健应助zhuzhu采纳,获得10
12秒前
LLY发布了新的文献求助10
14秒前
ASZXDW发布了新的文献求助10
15秒前
15秒前
15秒前
烟花应助机灵白筠采纳,获得10
16秒前
奋斗的延恶完成签到,获得积分10
16秒前
17秒前
wanyx发布了新的文献求助10
17秒前
17秒前
叶成帷完成签到,获得积分10
17秒前
星语星愿完成签到,获得积分0
17秒前
18秒前
朴素飞薇完成签到 ,获得积分10
18秒前
19秒前
19秒前
阔达碧空发布了新的文献求助10
19秒前
满意的访梦关注了科研通微信公众号
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813089
求助须知:如何正确求助?哪些是违规求助? 3357603
关于积分的说明 10387183
捐赠科研通 3074772
什么是DOI,文献DOI怎么找? 1688994
邀请新用户注册赠送积分活动 812496
科研通“疑难数据库(出版商)”最低求助积分说明 767130